Suppr超能文献

加速氧化石墨烯掺入的醋酸纤维素纳米纤维支架的生物矿化用于间充质干细胞成骨。

Accelerated biomineralization of graphene oxide - incorporated cellulose acetate nanofibrous scaffolds for mesenchymal stem cell osteogenesis.

机构信息

School of Nano Technology and Nano Bionics, University of Science and Technology of China, Suzhou 215123, PR China; CAS Key Laboratory of Nano-Bio Interface, Division of Nanobiomedicine, CAS Center for Excellence in Nanoscience, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, PR China.

CAS Key Laboratory of Nano-Bio Interface, Division of Nanobiomedicine, CAS Center for Excellence in Nanoscience, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, PR China.

出版信息

Colloids Surf B Biointerfaces. 2017 Nov 1;159:251-258. doi: 10.1016/j.colsurfb.2017.07.078. Epub 2017 Jul 29.

Abstract

For bone tissue engineering, it requires that the scaffolds have excellent biocompatibility, proper mechanical and osteoinductive properties. Electrospun nanofibers with extracellular matrices mimicking structure have proven to be good scaffolds for bone tissue repairing. Hybrid nanofibers in particular, endow the nanofibers with specific and multiple functionalities, and therefore have attracted increasing interests in the recent years. In this study, we fabricated graphene oxide (GO)-incorporated cellulose acetate (CA) nanofibrous scaffolds by electrospinning technique for enhancement of biomineralization and osteogenic differentiation of human mesenchymal stem cells (hMSCs). The results displayed the average fiber diameter was decreased from 595 to 285nm with the presence of GO from 0 to 1wt%. Furthermore, with incorporation of GO, the Young's modulus of the nanofibers increased in a dose-dependent manner. More importantly, the incorporation of GO led to significantly enhanced adhesion and proliferation of hMSCs on the scaffolds, mainly due to the good biocompatibility and extracellular matrices mimicking structure of the hybrid nanofibers. Exposure of the nanofibers to the simulated body fluid revealed that the biomineralization was improved significantly with the doping of GO in the nanofibers, possibly owing to the more nucleation sites for calcium phosphate provided by GO. The accelerated biomineralization on the GO-CA nanofibers resulted in a markedly increase in the activity of biomineralization-relevant alkaline phosphatase, and thus induced osteogenic differentiation of hMSCs. The current work demonstrated that the GO-CA nanofibrous scaffolds may find potential applications in bone tissue engineering and other regenerative medicine fields.

摘要

对于骨组织工程学而言,它需要支架具有优异的生物相容性、适当的机械性能和成骨诱导性能。具有模仿细胞外基质结构的静电纺纳米纤维已被证明是修复骨组织的良好支架。特别是杂化纳米纤维,赋予了纳米纤维特定的和多种功能,因此近年来引起了越来越多的关注。在这项研究中,我们通过静电纺丝技术制备了氧化石墨烯(GO)掺入的醋酸纤维素(CA)纳米纤维支架,以增强人骨髓间充质干细胞(hMSCs)的生物矿化和成骨分化。结果显示,随着 GO 从 0 到 1wt%的存在,平均纤维直径从 595nm 减小到 285nm。此外,随着 GO 的掺入,纳米纤维的杨氏模量呈剂量依赖性增加。更重要的是,GO 的掺入导致 hMSCs 在支架上的粘附和增殖显著增强,这主要归因于杂化纳米纤维的良好生物相容性和模仿细胞外基质的结构。纳米纤维暴露于模拟体液中表明,掺杂 GO 可显著提高纳米纤维的生物矿化,这可能是由于 GO 提供了更多的磷酸钙成核位点。GO-CA 纳米纤维上加速的生物矿化导致与生物矿化相关的碱性磷酸酶活性显著增加,从而诱导 hMSCs 的成骨分化。目前的工作表明,GO-CA 纳米纤维支架可能在骨组织工程和其他再生医学领域有潜在的应用。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验