Suppr超能文献

重复DNA的沉默由一个特殊基因家族的成员控制。

Silencing of Repetitive DNA Is Controlled by a Member of an Unusual Gene Family.

作者信息

Leyva-Díaz Eduardo, Stefanakis Nikolaos, Carrera Inés, Glenwinkel Lori, Wang Guoqiang, Driscoll Monica, Hobert Oliver

机构信息

Departments of Biological Sciences, Howard Hughes Medical Institute, Columbia University, New York, New York 10027 Biochemistry and Molecular Biophysics, Howard Hughes Medical Institute, Columbia University, New York, New York 10027

Departments of Biological Sciences, Howard Hughes Medical Institute, Columbia University, New York, New York 10027 Biochemistry and Molecular Biophysics, Howard Hughes Medical Institute, Columbia University, New York, New York 10027.

出版信息

Genetics. 2017 Oct;207(2):529-545. doi: 10.1534/genetics.117.300134. Epub 2017 Aug 11.

Abstract

Repetitive DNA sequences are subject to gene silencing in various animal species. Under specific circumstances repetitive DNA sequences can escape such silencing. For example, exogenously added, extrachromosomal DNA sequences that are stably inherited in multicopy repetitive arrays in the nematode are frequently silenced in the germline, whereas such silencing often does not occur in the soma. This indicates that somatic cells might utilize factors that prevent repetitive DNA silencing. Indeed, such "antisilencing" factors have been revealed through genetic screens that identified mutant loci in which repetitive transgenic arrays are aberrantly silenced in the soma. We describe here a novel locus, (for protein containing ALS2CR12 signature), required to prevent silencing of repetitive transgenes in neurons and other somatic tissue types. deficiency also severely impacts animal vigor and confers phenotypes reminiscent of accelerated aging. We find that is a member of a large family of divergent genes (39 members), defined by homology to the ALS2CR12 protein family. While gene family members are highly divergent, they show striking patterns of chromosomal clustering. The family expansion appears -specific and has not occurred to the same extent in other nematode species for which genome sequences are available. The transgene-silencing phenotype observed upon loss of PALS-22 protein depends on the biogenesis of small RNAs. We speculate that the gene family may be part of a species-specific cellular defense mechanism.

摘要

重复DNA序列在各种动物物种中会发生基因沉默。在特定情况下,重复DNA序列可以逃避这种沉默。例如,外源添加的、在线虫中以多拷贝重复阵列稳定遗传的染色体外DNA序列在生殖系中经常被沉默,而在体细胞中这种沉默通常不会发生。这表明体细胞可能利用了防止重复DNA沉默的因子。事实上,通过遗传筛选已经揭示了这样的“抗沉默”因子,这些筛选鉴定出了突变位点,其中重复转基因阵列在体细胞中异常沉默。我们在此描述一个新的位点,(含ALS2CR12特征蛋白),它是防止神经元和其他体细胞组织类型中重复转基因沉默所必需的。PALS-22缺陷也严重影响动物活力,并赋予类似于加速衰老的表型。我们发现PALS-22是一个由与ALS2CR12蛋白家族同源性定义的大的发散基因家族(39个成员)的一员。虽然基因家族成员高度发散,但它们显示出明显的染色体聚类模式。该家族的扩张似乎是特定物种的,在其他有基因组序列的线虫物种中没有发生到相同程度。PALS-22蛋白缺失时观察到的转基因沉默表型取决于小RNA的生物合成。我们推测PALS-22基因家族可能是物种特异性细胞防御机制的一部分。

相似文献

1
Silencing of Repetitive DNA Is Controlled by a Member of an Unusual Gene Family.
Genetics. 2017 Oct;207(2):529-545. doi: 10.1534/genetics.117.300134. Epub 2017 Aug 11.
2
Lack of pairing during meiosis triggers multigenerational transgene silencing in Caenorhabditis elegans.
Proc Natl Acad Sci U S A. 2015 May 19;112(20):E2667-76. doi: 10.1073/pnas.1501979112. Epub 2015 May 4.
3
Chromatin and RNAi factors protect the C. elegans germline against repetitive sequences.
Genes Dev. 2005 Apr 1;19(7):782-7. doi: 10.1101/gad.332305. Epub 2005 Mar 17.
5
Tissue homogeneity requires inhibition of unequal gene silencing during development.
J Cell Biol. 2016 Aug 1;214(3):319-31. doi: 10.1083/jcb.201601050. Epub 2016 Jul 25.
6
Nuclear RNAi contributes to the silencing of off-target genes and repetitive sequences in Caenorhabditis elegans.
Genetics. 2014 May;197(1):121-32. doi: 10.1534/genetics.113.159780. Epub 2014 Feb 14.
9
Stable Heritable Germline Silencing Directs Somatic Silencing at an Endogenous Locus.
Mol Cell. 2017 Feb 16;65(4):659-670.e5. doi: 10.1016/j.molcel.2017.01.034.
10
Transgene-mediated cosuppression and RNA interference enhance germ-line apoptosis in Caenorhabditis elegans.
Proc Natl Acad Sci U S A. 2012 Feb 28;109(9):3440-5. doi: 10.1073/pnas.1107390109. Epub 2012 Feb 13.

引用本文的文献

1
Dynamic control of Argonautes by a rapidly evolving immunological switch.
Curr Biol. 2025 Jul 7;35(13):3076-3089.e5. doi: 10.1016/j.cub.2025.05.039. Epub 2025 Jun 9.
2
Decreased SynMuv B gene activity in response to viral infection leads to activation of the antiviral RNAi pathway in C. elegans.
PLoS Biol. 2025 Jan 29;23(1):e3002748. doi: 10.1371/journal.pbio.3002748. eCollection 2025 Jan.
3
inositol hexaphosphate pathways couple to RNA interference and pathogen defense.
Proc Natl Acad Sci U S A. 2024 Dec 3;121(49):e2416982121. doi: 10.1073/pnas.2416982121. Epub 2024 Nov 27.
4
PALS-14 promotes resistance to infection in .
MicroPubl Biol. 2024 Oct 15;2024. doi: 10.17912/micropub.biology.001325. eCollection 2024.
5
SynMuv B gene activity is down-regulated during a viral infection to enhance RNA interference.
bioRxiv. 2024 Jul 16:2024.07.12.603258. doi: 10.1101/2024.07.12.603258.
6
Tissue-specific silencing of integrated transgenes achieved through endogenous RNA interference in .
RNA Biol. 2024 Jan;21(1):1-10. doi: 10.1080/15476286.2024.2332856. Epub 2024 Mar 26.
8
Multiple pals gene modules control a balance between immunity and development in Caenorhabditis elegans.
PLoS Pathog. 2023 Jul 18;19(7):e1011120. doi: 10.1371/journal.ppat.1011120. eCollection 2023 Jul.
9
An organismal understanding of C. elegans innate immune responses, from pathogen recognition to multigenerational resistance.
Semin Cell Dev Biol. 2024 Feb 15;154(Pt A):77-84. doi: 10.1016/j.semcdb.2023.03.005. Epub 2023 Mar 23.
10
Multiple gene modules control a balance between immunity and development in .
bioRxiv. 2023 Jan 18:2023.01.15.524171. doi: 10.1101/2023.01.15.524171.

本文引用的文献

1
An Intracellular Pathogen Response Pathway Promotes Proteostasis in C. elegans.
Curr Biol. 2017 Nov 20;27(22):3544-3553.e5. doi: 10.1016/j.cub.2017.10.009. Epub 2017 Nov 2.
2
An evolutionarily conserved transcriptional response to viral infection in Caenorhabditis nematodes.
BMC Genomics. 2017 Apr 17;18(1):303. doi: 10.1186/s12864-017-3689-3.
3
InterPro in 2017-beyond protein family and domain annotations.
Nucleic Acids Res. 2017 Jan 4;45(D1):D190-D199. doi: 10.1093/nar/gkw1107. Epub 2016 Nov 29.
4
PANTHER version 11: expanded annotation data from Gene Ontology and Reactome pathways, and data analysis tool enhancements.
Nucleic Acids Res. 2017 Jan 4;45(D1):D183-D189. doi: 10.1093/nar/gkw1138. Epub 2016 Nov 29.
5
Regulatory activities of transposable elements: from conflicts to benefits.
Nat Rev Genet. 2017 Feb;18(2):71-86. doi: 10.1038/nrg.2016.139. Epub 2016 Nov 21.
6
CTRL+INSERT: retrotransposons and their contribution to regulation and innovation of the transcriptome.
EMBO Rep. 2016 Aug;17(8):1131-44. doi: 10.15252/embr.201642743. Epub 2016 Jul 11.
7
The piRNA Pathway Guards the Germline Genome Against Transposable Elements.
Adv Exp Med Biol. 2016;886:51-77. doi: 10.1007/978-94-017-7417-8_4.
8
The developmental control of transposable elements and the evolution of higher species.
Annu Rev Cell Dev Biol. 2015;31:429-51. doi: 10.1146/annurev-cellbio-100814-125514. Epub 2015 Sep 17.
9
Regulatory Logic of Pan-Neuronal Gene Expression in C. elegans.
Neuron. 2015 Aug 19;87(4):733-50. doi: 10.1016/j.neuron.2015.07.031.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验