Suppr超能文献

基于键离解能的自适应神经模糊推理系统应用定量构效关系研究酚类化合物抗氧化活性。

Adaptive neuro-fuzzy inference system-applied QSAR with bond dissociation energy for antioxidant activities of phenolic compounds.

机构信息

Convergence Research Center for Smart Farm Solution, Korea Institute of Science and Technology (KIST), Gangneung Institute of Natural Products, Gangneung, Gangwon-do, 25451, Korea.

Department of Food and Nutrition, and Research Institute of Human Ecology, Seoul National University, Seoul, 08826, Korea.

出版信息

Arch Pharm Res. 2017 Oct;40(10):1146-1155. doi: 10.1007/s12272-017-0944-8. Epub 2017 Aug 11.

Abstract

The aim of this study was to develop quantitative structure-activity relationship (QSAR) models for predicting antioxidant activities of phenolic compounds. The bond dissociation energy of O-H bond (BDE) was calculated by semi-empirical quantum chemical methods. As a new parameter for QSAR models, sum of reciprocals of BDE of enol and phenol groups (X ) was calculated. Significant correlations were observed between X and antioxidant activities, and X was introduced as a parameter for developing QSAR models. Linear regression-applied QSAR models and adaptive neuro-fuzzy inference system (ANFIS)-applied QSAR models were developed. QSAR models by both of linear regression and ANFIS achieved high prediction accuracies. Among the developed models, ANFIS-applied models achieved better prediction accuracies than linear regression-applied models. From these results, the proposed parameter of X was confirmed as an appropriate variable for predicting and analysing antioxidant activities of phenolic compounds. Also, the ANFIS could be applied on QSAR models to improve prediction accuracy.

摘要

本研究旨在建立定量构效关系(QSAR)模型,以预测酚类化合物的抗氧化活性。通过半经验量子化学方法计算 O-H 键的键离解能(BDE)。作为 QSAR 模型的一个新参数,烯醇和苯酚基团的 BDE 的倒数之和(X )被计算出来。X 与抗氧化活性之间存在显著相关性,因此将 X 引入到 QSAR 模型的开发中。建立了线性回归应用 QSAR 模型和自适应神经模糊推理系统(ANFIS)应用 QSAR 模型。线性回归和 ANFIS 建立的 QSAR 模型均具有较高的预测精度。在所建立的模型中,ANFIS 应用模型的预测精度优于线性回归应用模型。从这些结果可以证实,所提出的参数 X 是预测和分析酚类化合物抗氧化活性的合适变量。此外,ANFIS 可应用于 QSAR 模型以提高预测精度。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验