Suppr超能文献

基于计算机的科学和历史学习环境中的监测与策略深度使用。

Monitoring and depth of strategy use in computer-based learning environments for science and history.

机构信息

University of North Carolina at Chapel Hill, North Carolina, USA.

出版信息

Br J Educ Psychol. 2018 Mar;88(1):63-79. doi: 10.1111/bjep.12174. Epub 2017 Aug 12.

Abstract

BACKGROUND

Self-regulated learning (SRL) models position metacognitive monitoring as central to SRL processing and predictive of student learning outcomes (Winne & Hadwin, 2008; Zimmerman, 2000). A body of research evidence also indicates that depth of strategy use, ranging from surface to deep processing, is predictive of learning performance.

AIMS

In this study, we investigated the relationships among the frequency of metacognitive monitoring and the utilization of deep and surface-level strategies, and the connections between these SRL processes and learning outcomes across two academic domains, science and history.

SAMPLE

This was a secondary data analysis of two studies. The first study sample was 170 undergraduate students from a University in the south-eastern United States. The second study sample consisted of 40 US high school students in the same area.

METHODS

We collected think-aloud protocol SRL and knowledge measure data and conducted both structural equation modelling and path analysis to investigate our research questions.

RESULTS

Findings showed across both studies and two distinct academic domains, students who enacted more frequent monitoring also enacted more frequent deep strategies resulting in better performance on academic evaluations.

CONCLUSIONS

These findings suggest the importance of measuring not only what depth of strategies learners use, but also the degree to which they monitor their learning. Attention to both is needed in research and practice.

摘要

背景

自我调节学习(SRL)模型将元认知监控置于 SRL 处理的核心位置,并预测学生的学习成果(Winne & Hadwin,2008;Zimmerman,2000)。大量研究证据还表明,从表面处理到深度处理的策略使用深度与学习表现相关。

目的

在这项研究中,我们调查了元认知监控频率与深度和表面策略使用之间的关系,以及这些 SRL 过程与两个学术领域(科学和历史)的学习成果之间的联系。

样本

这是对两项研究的二次数据分析。第一项研究的样本是来自美国东南部一所大学的 170 名本科生。第二项研究的样本由来自同一地区的 40 名美国高中生组成。

方法

我们收集了出声思维法 SRL 和知识测量数据,并进行了结构方程建模和路径分析,以调查我们的研究问题。

结果

研究结果表明,在两项研究和两个不同的学术领域中,频繁进行监控的学生也频繁地采用深度策略,从而在学术评估中取得更好的成绩。

结论

这些发现表明,在研究和实践中,不仅需要测量学习者使用的策略的深度,还需要测量他们监控学习的程度。这两个方面都需要关注。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验