Suppr超能文献

使用静息态脑电图对甲基苯丙胺使用障碍进行计算机辅助分类和特征描述。

Computer-aided classifying and characterizing of methamphetamine use disorder using resting-state EEG.

作者信息

Khajehpour Hassan, Mohagheghian Fahimeh, Ekhtiari Hamed, Makkiabadi Bahador, Jafari Amir Homayoun, Eqlimi Ehsan, Harirchian Mohammad Hossein

机构信息

1Department of Medical Physics and Biomedical Engineering, School of Medicine, Tehran University of Medical Sciences (TUMS), Tehran, Iran.

6Research Center for Biomedical Technology and Robotics (RCBTR), Institute of Advanced Medical Technologies (IAMT), Tehran University of Medical Sciences (TUMS), Tehran, Iran.

出版信息

Cogn Neurodyn. 2019 Dec;13(6):519-530. doi: 10.1007/s11571-019-09550-z. Epub 2019 Aug 7.

Abstract

Methamphetamine (meth) is potently addictive and is closely linked to high crime rates in the world. Since meth withdrawal is very painful and difficult, most abusers relapse to abuse in traditional treatments. Therefore, developing accurate data-driven methods based on brain functional connectivity could be helpful in classifying and characterizing the neural features of meth dependence to optimize the treatments. Accordingly, in this study, computation of functional connectivity using resting-state EEG was used to classify meth dependence. Firstly, brain functional connectivity networks (FCNs) of 36 meth dependent individuals and 24 normal controls were constructed by weighted phase lag index, in six frequency bands: delta (1-4 Hz), theta (4-8 Hz), alpha (8-15 Hz), beta (15-30 Hz), gamma (30-45 Hz) and wideband (1-45 Hz).Then, significant differences in graph metrics and connectivity values of the FCNs were used to distinguish the two groups. Support vector machine classifier had the best performance with 93% accuracy, 100% sensitivity, 83% specificity and 0.94 F-score for differentiating between MDIs and NCs. The best performance yielded when selected features were the combination of connectivity values and graph metrics in the beta frequency band.

摘要

甲基苯丙胺(冰毒)极易成瘾,且与全球高犯罪率密切相关。由于冰毒戒断非常痛苦且困难,大多数滥用者在传统治疗中会复吸。因此,开发基于脑功能连接的准确数据驱动方法可能有助于对冰毒依赖的神经特征进行分类和表征,以优化治疗。据此,在本研究中,使用静息态脑电图计算功能连接来对冰毒依赖进行分类。首先,通过加权相位滞后指数,在六个频段:δ(1 - 4Hz)、θ(4 - 8Hz)、α(8 - 15Hz)、β(15 - 30Hz)、γ(30 - 45Hz)和宽带(1 - 45Hz),构建了36名冰毒依赖个体和24名正常对照的脑功能连接网络(FCN)。然后,利用FCN的图指标和连接值的显著差异来区分两组。支持向量机分类器在区分冰毒依赖个体和正常对照时表现最佳,准确率为93%,灵敏度为100%,特异性为83%,F值为0.94。当选择的特征是β频段的连接值和图指标的组合时,性能最佳。

相似文献

1
Computer-aided classifying and characterizing of methamphetamine use disorder using resting-state EEG.
Cogn Neurodyn. 2019 Dec;13(6):519-530. doi: 10.1007/s11571-019-09550-z. Epub 2019 Aug 7.
3
Computer-Aided Tinnitus Detection based on Brain Network Analysis of EEG Functional Connectivity.
J Biomed Phys Eng. 2019 Dec 1;9(6):687-698. doi: 10.31661/jbpe.v0i0.937. eCollection 2019 Dec.
6
Disrupted resting-state brain functional network in methamphetamine abusers: A brain source space study by EEG.
PLoS One. 2019 Dec 11;14(12):e0226249. doi: 10.1371/journal.pone.0226249. eCollection 2019.
7
EEG Resting State Functional Connectivity in Adult Dyslexics Using Phase Lag Index and Graph Analysis.
Front Hum Neurosci. 2018 Aug 30;12:341. doi: 10.3389/fnhum.2018.00341. eCollection 2018.
8
Reliability of Magnetoencephalography and High-Density Electroencephalography Resting-State Functional Connectivity Metrics.
Brain Connect. 2019 Sep;9(7):539-553. doi: 10.1089/brain.2019.0662. Epub 2019 Jun 26.
9
Global organization of functional brain connectivity in methamphetamine abusers.
Clin Neurophysiol. 2013 Jun;124(6):1122-31. doi: 10.1016/j.clinph.2012.12.003. Epub 2013 Jan 16.
10
Characterization of Young and Old Adult Brains: An EEG Functional Connectivity Analysis.
Neuroscience. 2019 Dec 1;422:230-239. doi: 10.1016/j.neuroscience.2019.08.038.

引用本文的文献

1
An electroencephalography connectome predictive model of craving for methamphetamine.
Int J Clin Health Psychol. 2025 Jan-Mar;25(1):100551. doi: 10.1016/j.ijchp.2025.100551. Epub 2025 Feb 8.
2
Resting state EEG delta-beta amplitude-amplitude coupling: a neural predictor of cortisol response under stress.
Cogn Neurodyn. 2024 Dec;18(6):3995-4007. doi: 10.1007/s11571-024-10174-1. Epub 2024 Oct 3.
3
Assessment of rTMS treatment effects for methamphetamine addiction based on EEG functional connectivity.
Cogn Neurodyn. 2024 Oct;18(5):2373-2386. doi: 10.1007/s11571-024-10097-x. Epub 2024 Mar 19.
4
Identification of Methamphetamine Abusers Can Be Supported by EEG-Based Wavelet Transform and BiLSTM Networks.
Brain Topogr. 2024 Nov;37(6):1217-1231. doi: 10.1007/s10548-024-01062-2. Epub 2024 Jul 2.
6
An electroencephalographic signature predicts craving for methamphetamine.
Cell Rep Med. 2024 Jan 16;5(1):101347. doi: 10.1016/j.xcrm.2023.101347. Epub 2023 Dec 26.
8
Challenges and future trends in wearable closed-loop neuromodulation to efficiently treat methamphetamine addiction.
Front Psychiatry. 2023 Feb 23;14:1085036. doi: 10.3389/fpsyt.2023.1085036. eCollection 2023.
10
NDCN-Brain: An Extensible Dynamic Functional Brain Network Model.
Diagnostics (Basel). 2022 May 23;12(5):1298. doi: 10.3390/diagnostics12051298.

本文引用的文献

1
Computer-Aided Tinnitus Detection based on Brain Network Analysis of EEG Functional Connectivity.
J Biomed Phys Eng. 2019 Dec 1;9(6):687-698. doi: 10.31661/jbpe.v0i0.937. eCollection 2019 Dec.
2
EEG Frequency Bands in Psychiatric Disorders: A Review of Resting State Studies.
Front Hum Neurosci. 2019 Jan 9;12:521. doi: 10.3389/fnhum.2018.00521. eCollection 2018.
3
5
A review on EEG-based methods for screening and diagnosing alcohol use disorder.
Cogn Neurodyn. 2018 Apr;12(2):141-156. doi: 10.1007/s11571-017-9465-x. Epub 2017 Dec 5.
6
The neural correlates of the unified percept of alcohol-related craving: a fMRI and EEG study.
Sci Rep. 2018 Jan 17;8(1):923. doi: 10.1038/s41598-017-18471-y.
7
An EEG-based functional connectivity measure for automatic detection of alcohol use disorder.
Artif Intell Med. 2018 Jan;84:79-89. doi: 10.1016/j.artmed.2017.11.002. Epub 2017 Nov 21.
8
Resting-state EEG activity related to impulsivity in gambling disorder.
J Behav Addict. 2017 Sep 1;6(3):387-395. doi: 10.1556/2006.6.2017.055. Epub 2017 Aug 31.
9
Nonlinear Dynamic Complexity and Sources of Resting-state EEG in Abstinent Heroin Addicts.
IEEE Trans Nanobioscience. 2017 Jul;16(5):349-355. doi: 10.1109/TNB.2017.2705689.
10
Neutron spectrum unfolding using radial basis function neural networks.
Appl Radiat Isot. 2017 Nov;129:35-41. doi: 10.1016/j.apradiso.2017.07.048. Epub 2017 Jul 26.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验