Komiya Dai, Hori Akane, Ishida Takuya, Igarashi Kiyohiko, Samejima Masahiro, Koseki Takuya, Fushinobu Shinya
Department of Biotechnology, The University of Tokyo, Tokyo, Japan.
Faculty of Agriculture, Yamagata University, Tsuruoka, Yamagata, Japan.
Appl Environ Microbiol. 2017 Sep 29;83(20). doi: 10.1128/AEM.01251-17. Print 2017 Oct 15.
Acetyl xylan esterase (AXE) catalyzes the hydrolysis of the acetyl bonds present in plant cell wall polysaccharides. Here, we determined the crystal structure of AXE from (AXEA), providing the three-dimensional structure of an enzyme in the Esterase_phb family. AXEA shares its core α/β-hydrolase fold structure with esterases in other families, but it has an extended central β-sheet at both its ends and an extra loop. Structural comparison with a ferulic acid esterase (FAE) from indicated that AXEA has a conserved catalytic machinery: a catalytic triad (Ser119, His259, and Asp202) and an oxyanion hole (Cys40 and Ser120). Near the catalytic triad of lAXEA, two aromatic residues (Tyr39 and Trp160) form small pockets at both sides. Homology models of fungal FAEs in the same Esterase_phb family have wide pockets at the corresponding sites because they have residues with smaller side chains (Pro, Ser, and Gly). Mutants with site-directed mutations at Tyr39 showed a substrate specificity similar to that of the wild-type enzyme, whereas those with mutations at Trp160 acquired an expanded substrate specificity. Interestingly, the Trp160 mutants acquired weak but significant type B-like FAE activity. Moreover, the engineered enzymes exhibited ferulic acid-releasing activity from wheat arabinoxylan. Hemicelluloses in the plant cell wall are often decorated by acetyl and ferulic acid groups. Therefore, complete and efficient degradation of plant polysaccharides requires the enzymes for cleaving the side chains of the polymer. Since the Esterase_phb family contains a wide array of fungal FAEs and AXEs from fungi and bacteria, our study will provide a structural basis for the molecular mechanism of these industrially relevant enzymes in biopolymer degradation. The structure of the Esterase_phb family also provides information for bacterial polyhydroxyalkanoate depolymerases that are involved in biodegradation of thermoplastic polymers.
乙酰木聚糖酯酶(AXE)催化植物细胞壁多糖中乙酰键的水解。在此,我们测定了来自[具体来源未给出]的AXE(AXEA)的晶体结构,提供了酯酶_phb家族中一种酶的三维结构。AXEA与其他家族的酯酶共享其核心α/β-水解酶折叠结构,但在其两端有一个延伸的中央β-折叠片和一个额外的环。与来自[具体来源未给出]的阿魏酸酯酶(FAE)的结构比较表明,AXEA具有保守的催化机制:一个催化三联体(Ser119、His259和Asp202)和一个氧阴离子洞(Cys40和Ser120)。在lAXEA的催化三联体附近,两个芳香族残基(Tyr39和Trp160)在两侧形成小口袋。同一酯酶_phb家族中真菌FAE的同源模型在相应位点有宽口袋,因为它们具有侧链较小的残基(Pro、Ser和Gly)。在Tyr39处进行定点突变的突变体表现出与野生型酶相似的底物特异性,而在Trp160处进行突变的突变体获得了扩展的底物特异性。有趣的是,Trp160突变体获得了微弱但显著的B类FAE活性。此外,工程酶表现出从小麦阿拉伯木聚糖中释放阿魏酸的活性。植物细胞壁中的半纤维素通常被乙酰基和阿魏酸基团修饰。因此,植物多糖的完全有效降解需要用于切割聚合物侧链的酶。由于酯酶_phb家族包含来自真菌和细菌的多种真菌FAE和AXE,我们的研究将为这些工业相关酶在生物聚合物降解中的分子机制提供结构基础。酯酶_phb家族的结构也为参与热塑性聚合物生物降解的细菌聚羟基脂肪酸酯解聚酶提供了信息。