文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

光驱动的膜组装、化学响应性合成细胞的形态转变和组织形成。

Light-Driven Membrane Assembly, Shape-Shifting, and Tissue Formation in Chemically Responsive Synthetic Cells.

机构信息

Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093, United States.

出版信息

J Am Chem Soc. 2023 Nov 29;145(47):25815-25823. doi: 10.1021/jacs.3c09894. Epub 2023 Nov 14.


DOI:10.1021/jacs.3c09894
PMID:37963186
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC10690792/
Abstract

Living systems create remarkable complexity from a limited repertoire of biological building blocks by controlling assembly dynamics at the molecular, cellular, and multicellular level. An open question is whether simplified synthetic cells can gain similar complex functionality by being driven away from equilibrium. Here, we describe a dynamic synthetic cell system assembled using artificial lipids that are responsive to both light and chemical stimuli. Irradiation of disordered aggregates of lipids leads to the spontaneous emergence of giant cell-like vesicles, which revert to aggregates when illumination is turned off. Under irradiation, the synthetic cell membranes can interact with chemical building blocks, remodeling their composition and forming new structures that prevent the membranes from undergoing retrograde aggregation processes. The remodeled light-responsive synthetic cells reversibly alter their shape under irradiation, transitioning from spheres to rodlike shapes, mimicking energy-dependent functions normally restricted to living materials. In the presence of noncovalently interacting multivalent polymers, light-driven shape changes can be used to trigger vesicle cross-linking, leading to the formation of functional synthetic tissues. By controlling light and chemical inputs, the stepwise, one-pot transformation of lipid aggregates to multivesicular synthetic tissues is feasible. Our results suggest a rationale for why even early protocells may have required and evolved simple mechanisms to harness environmental energy sources to coordinate hierarchical assembly processes.

摘要

生命系统通过控制分子、细胞和多细胞水平的组装动力学,从有限的生物构建块中创造出显著的复杂性。一个悬而未决的问题是,简化的合成细胞是否可以通过远离平衡来获得类似的复杂功能。在这里,我们描述了一个使用对光和化学刺激都有反应的人工脂质组装的动态合成细胞系统。无序脂质聚集体的辐照导致类似巨细胞的囊泡自发出现,当光照关闭时又恢复为聚集体。在辐照下,合成细胞膜可以与化学构建块相互作用,改变其组成并形成新的结构,防止膜发生逆行聚集过程。经过修饰的对光响应的合成细胞在辐照下可逆地改变其形状,从球体转变为棒状,模拟通常仅限于活体材料的能量依赖性功能。在非共价相互作用的多价聚合物存在下,光驱动的形状变化可用于触发囊泡交联,从而形成功能性的合成组织。通过控制光和化学输入,从脂质聚集体到多室合成组织的逐步一锅转化是可行的。我们的结果为为什么即使是早期原细胞也可能需要并进化出简单的机制来利用环境能源来协调分层组装过程提供了一个合理的解释。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b9b4/10690792/d9e48b7b342b/ja3c09894_0005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b9b4/10690792/7713ae7cad87/ja3c09894_0001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b9b4/10690792/a29cbfc2a804/ja3c09894_0002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b9b4/10690792/a7864817bdd5/ja3c09894_0003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b9b4/10690792/359d95025c8f/ja3c09894_0004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b9b4/10690792/d9e48b7b342b/ja3c09894_0005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b9b4/10690792/7713ae7cad87/ja3c09894_0001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b9b4/10690792/a29cbfc2a804/ja3c09894_0002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b9b4/10690792/a7864817bdd5/ja3c09894_0003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b9b4/10690792/359d95025c8f/ja3c09894_0004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b9b4/10690792/d9e48b7b342b/ja3c09894_0005.jpg

相似文献

[1]
Light-Driven Membrane Assembly, Shape-Shifting, and Tissue Formation in Chemically Responsive Synthetic Cells.

J Am Chem Soc. 2023-11-29

[2]
Macromolecular crowding: chemistry and physics meet biology (Ascona, Switzerland, 10-14 June 2012).

Phys Biol. 2013-8

[3]
Acyl Phosphates as Chemically Fueled Building Blocks for Self-Sustaining Protocells.

Angew Chem Int Ed Engl. 2024-7-22

[4]
Self-Organizing Microdroplet Protocells Displaying Light-Driven Oscillatory and Morphological Evolution.

Small. 2021-6

[5]
Heterogeneous Synthetic Vesicles toward Artificial Cells: Engineering Structure and Composition of Membranes for Multimodal Functionalities.

Biomacromolecules. 2022-4-11

[6]
Light-Activated Synthetic Rotary Motors in Lipid Membranes Induce Shape Changes Through Membrane Expansion.

Adv Mater. 2024-4

[7]
Early self-reproduction, the emergence of division mechanisms in protocells.

Mol Biosyst. 2013-2-2

[8]
Overcoming the Dilemma of Permeability and Stability of Polymersomes through Traceless Cross-Linking.

Acc Chem Res. 2022-12-6

[9]
Shape Deformation, Budding and Division of Giant Vesicles and Artificial Cells: A Review.

Life (Basel). 2022-6-6

[10]
Nonenzymatic biomimetic remodeling of phospholipids in synthetic liposomes.

Proc Natl Acad Sci U S A. 2016-8-2

引用本文的文献

[1]
Biomineralization-Inspired Membranization Toward Structural Enhancement of Coacervate Community.

Adv Sci (Weinh). 2025-5

[2]
Programmed Fabrication of Vesicle-Based Prototissue Fibers with Modular Functionalities.

Adv Sci (Weinh). 2025-4

[3]
Phase-Separated Spiropyran Coacervates as Dual-Wavelength-Switchable Reactive Oxygen Generators.

Angew Chem Int Ed Engl. 2025-2-17

[4]
Advancements in Engineering Planar Model Cell Membranes: Current Techniques, Applications, and Future Perspectives.

Nanomaterials (Basel). 2024-9-13

本文引用的文献

[1]
Advances and opportunities in the exciting world of azobenzenes.

Nat Rev Chem. 2022-1

[2]
Endosomal lipid signaling reshapes the endoplasmic reticulum to control mitochondrial function.

Science. 2022-12-16

[3]
Living material assembly of bacteriogenic protocells.

Nature. 2022-9

[4]
Transformation of Supramolecular Membranes to Vesicles Driven by Spontaneous Gradual Deprotonation on Membrane Surfaces.

J Am Chem Soc. 2022-9-28

[5]
An autonomously oscillating supramolecular self-replicator.

Nat Chem. 2022-7

[6]
Phototriggered Spatially Controlled Out-of-Equilibrium Patterns of Peptide Nanofibers in a Self-Sorting Double Network Hydrogel.

J Am Chem Soc. 2021-11-24

[7]
Mechanisms and functions of membrane lipid remodeling in plants.

Plant J. 2021-7

[8]
Principles of Membrane Adaptation Revealed through Environmentally Induced Bacterial Lipidome Remodeling.

Cell Rep. 2020-9-22

[9]
A mutually stabilized host-guest pair.

Sci Adv. 2019-11-1

[10]
The Importance of Cell-Cell Interaction Dynamics in Bottom-Up Tissue Engineering: Concepts of Colloidal Self-Assembly in the Fabrication of Multicellular Architectures.

Nano Lett. 2020-4-8

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索