Krivitsky Pavel N, Handcock Mark S
University of Washington.
J Stat Softw. 2008 Feb;24. doi: 10.18637/jss.v024.i05.
is a package to fit and evaluate statistical latent position and cluster models for networks. Hoff, Raftery, and Handcock (2002) suggested an approach to modeling networks based on positing the existence of an latent space of characteristics of the actors. Relationships form as a function of distances between these characteristics as well as functions of observed dyadic level covariates. In social distances are represented in a Euclidean space. It also includes a variant of the extension of the latent position model to allow for clustering of the positions developed in Handcock, Raftery, and Tantrum (2007). The package implements Bayesian inference for the models based on an Markov chain Monte Carlo algorithm. It can also compute maximum likelihood estimates for the latent position model and a two-stage maximum likelihood method for the latent position cluster model. For latent position cluster models, the package provides a Bayesian way of assessing how many groups there are, and thus whether or not there is any clustering (since if the preferred number of groups is 1, there is little evidence for clustering). It also estimates which cluster each actor belongs to. These estimates are probabilistic, and provide the probability of each actor belonging to each cluster. It computes four types of point estimates for the coefficients and positions: maximum likelihood estimate, posterior mean, posterior mode and the estimator which minimizes Kullback-Leibler divergence from the posterior. You can assess the goodness-of-fit of the model via posterior predictive checks. It has a function to simulate networks from a latent position or latent position cluster model.
是一个用于拟合和评估网络统计潜在位置和聚类模型的软件包。霍夫、拉夫蒂和汉德科克(2002年)提出了一种基于假设存在参与者特征潜在空间的网络建模方法。关系的形成是这些特征之间距离的函数以及观察到的二元水平协变量的函数。在社会距离在欧几里得空间中表示。它还包括潜在位置模型扩展的一个变体,以允许对汉德科克、拉夫蒂和坦特鲁姆(2007年)开发的位置进行聚类。该软件包基于马尔可夫链蒙特卡罗算法对模型进行贝叶斯推断。它还可以计算潜在位置模型的最大似然估计和潜在位置聚类模型的两阶段最大似然方法。对于潜在位置聚类模型,该软件包提供了一种贝叶斯方法来评估有多少组,从而评估是否存在任何聚类(因为如果首选的组数为1,则几乎没有聚类的证据)。它还估计每个参与者属于哪个聚类。这些估计是概率性的,并提供每个参与者属于每个聚类的概率。它计算系数和位置的四种类型的点估计:最大似然估计、后验均值、后验众数以及使与后验的库尔贝克-莱布勒散度最小化的估计器。你可以通过后验预测检验来评估模型的拟合优度。它有一个从潜在位置或潜在位置聚类模型模拟网络的函数。