Suppr超能文献

意识障碍中的网络分析:四个问题与一个提议的解决方案(指数随机图模型)

Network Analysis in Disorders of Consciousness: Four Problems and One Proposed Solution (Exponential Random Graph Models).

作者信息

Dell'Italia John, Johnson Micah A, Vespa Paul M, Monti Martin M

机构信息

Department of Psychology, University of California, Los Angeles, Los Angeles, CA, United States.

Brain Injury Research Center, Department of Neurosurgery, David Geffen School of Medicine at UCLA, Los Angeles, CA, United States.

出版信息

Front Neurol. 2018 Jun 12;9:439. doi: 10.3389/fneur.2018.00439. eCollection 2018.

Abstract

In recent years, the study of the neural basis of consciousness, particularly in the context of patients recovering from severe brain injury, has greatly benefited from the application of sophisticated network analysis techniques to functional brain data. Yet, current graph theoretic approaches, as employed in the neuroimaging literature, suffer from four important shortcomings. First, they require arbitrary fixing of the number of connections (i.e., density) across networks which are likely to have different "natural" (i.e., stable) density (e.g., patients vs. controls, vegetative state vs. minimally conscious state patients). Second, when describing networks, they do not control for the fact that many characteristics are interrelated, particularly some of the most popular metrics employed (e.g., nodal degree, clustering coefficient)-which can lead to spurious results. Third, in the clinical domain of disorders of consciousness, there currently are no methods for incorporating structural connectivity in the characterization of functional networks which clouds the interpretation of functional differences across groups with different underlying pathology as well as in longitudinal approaches where structural reorganization processes might be operating. Finally, current methods do not allow assessing the dynamics of network change over time. We present a different framework for network analysis, based on Exponential Random Graph Models, which overcomes the above limitations and is thus particularly well suited for clinical populations with disorders of consciousness. We demonstrate this approach in the context of the longitudinal study of recovery from coma. First, our data show that throughout recovery from coma, brain graphs vary in their natural level of connectivity (from 10.4 to 14.5%), which conflicts with the standard approach of imposing arbitrary and equal density thresholds across networks (e.g., time-points, subjects, groups). Second, we show that failure to consider the interrelation between network measures does lead to spurious characterization of both inter- and intra-regional brain connectivity. Finally, we show that Separable Temporal ERGM can be employed to describe network dynamics over time revealing the specific pattern of formation and dissolution of connectivity that accompany recovery from coma.

摘要

近年来,意识神经基础的研究,尤其是在严重脑损伤患者康复的背景下,通过将复杂的网络分析技术应用于功能性脑数据而受益匪浅。然而,神经影像学文献中采用的当前图论方法存在四个重要缺点。首先,它们需要任意固定跨网络的连接数量(即密度),而这些网络可能具有不同的“自然”(即稳定)密度(例如,患者与对照组、植物状态与微意识状态患者)。其次,在描述网络时,它们没有考虑到许多特征是相互关联的,特别是一些最常用的指标(例如,节点度、聚类系数)——这可能导致虚假结果。第三,在意识障碍的临床领域,目前没有方法将结构连接纳入功能性网络的特征描述中,这使得对具有不同潜在病理的群体之间的功能差异以及在可能存在结构重组过程的纵向研究中的功能差异的解释变得模糊。最后,当前方法不允许评估网络随时间变化的动态。我们提出了一种基于指数随机图模型的不同网络分析框架,该框架克服了上述局限性,因此特别适合有意识障碍的临床人群。我们在昏迷恢复的纵向研究背景下展示了这种方法。首先,我们的数据表明,在从昏迷中恢复的整个过程中,脑图的自然连接水平各不相同(从10.4%到14.5%),这与在网络(例如,时间点、受试者、组)上强加任意且相等密度阈值的标准方法相矛盾。其次,我们表明,不考虑网络测量之间的相互关系确实会导致对区域间和区域内脑连接的虚假表征。最后,我们表明可分离时间指数随机图模型可用于描述随时间变化的网络动态,揭示伴随昏迷恢复的连接形成和消散的具体模式。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4118/6005847/609e43fe5acb/fneur-09-00439-g0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验