Suppr超能文献

新冠疫情与社交媒体:超越两极分化

COVID-19 and social media: Beyond polarization.

作者信息

De Nicola Giacomo, Tuekam Mambou Victor H, Kauermann Göran

机构信息

Department of Statistics, Ludwig Maximilian University of Munich, 80539 Munich, Germany.

ifo Institute - Leibniz Institute for Economic Research at the University of Munich, 81679 Munich, Germany.

出版信息

PNAS Nexus. 2023 Aug 1;2(8):pgad246. doi: 10.1093/pnasnexus/pgad246. eCollection 2023 Aug.

Abstract

The COVID-19 pandemic brought upon a massive wave of disinformation, exacerbating polarization in the increasingly divided landscape of online discourse. In this context, popular social media users play a major role, as they have the ability to broadcast messages to large audiences and influence public opinion. In this article, we make use of openly available data to study the behavior of popular users discussing the pandemic on Twitter. We tackle the issue from a network perspective, considering users as nodes and following relationships as directed edges. The resulting network structure is modeled by embedding the actors in a latent social space, where users closer to one another have a higher probability of following each other. The results suggest the existence of two distinct communities, which can be interpreted as "generally pro" and "generally against" vaccine mandates, corroborating existing evidence on the pervasiveness of echo chambers on the platform. By focusing on a number of notable users, such as politicians, activists, and news outlets, we further show that the two groups are not entirely homogeneous, and that not just the two poles are represented. To the contrary, the latent space captures an entire spectrum of beliefs between the two extremes, demonstrating that polarization, while present, is not the only driver of the network, and that more moderate, "central" users are key players in the discussion.

摘要

新冠疫情引发了大量虚假信息浪潮,在日益分化的网络话语格局中加剧了两极分化。在这种背景下,社交媒体上的知名用户发挥着重要作用,因为他们有能力向大量受众传播信息并影响公众舆论。在本文中,我们利用公开可用的数据来研究在推特上讨论疫情的知名用户的行为。我们从网络角度解决这个问题,将用户视为节点,关注关系视为有向边。通过将参与者嵌入一个潜在的社会空间来对由此产生的网络结构进行建模,在这个空间中,彼此距离较近的用户更有可能相互关注。结果表明存在两个不同的群体,可以解释为“总体支持”和“总体反对”疫苗强制令,这证实了关于该平台上回音室普遍存在的现有证据。通过关注一些知名用户,如政治家、活动家及新闻媒体,我们进一步表明这两个群体并非完全同质化,且并非只有两个极端立场。相反,潜在空间捕捉到了两个极端之间的一整套信念,表明两极分化虽然存在,但并非网络的唯一驱动因素,较为温和的“中间”用户才是讨论中的关键参与者。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/428e/10411931/53023ec841a0/pgad246f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验