Feilke Kathleen, Ajlani Ghada, Krieger-Liszkay Anja
Institute for Integrative Biology of the Cell (I2BC), Commissariat à l'Energie Atomique et aux Energies Alternatives (CEA) Saclay, Centre National de la Recherche Scientifique (CNRS), Université Paris-Sud, Université Paris-Saclay, 91191 Gif-sur-Yvette Cedex, France.
Institute for Integrative Biology of the Cell (I2BC), Commissariat à l'Energie Atomique et aux Energies Alternatives (CEA) Saclay, Centre National de la Recherche Scientifique (CNRS), Université Paris-Sud, Université Paris-Saclay, 91191 Gif-sur-Yvette Cedex, France
Philos Trans R Soc Lond B Biol Sci. 2017 Sep 26;372(1730). doi: 10.1098/rstb.2016.0379.
Cyanobacteria are the most ancient organisms performing oxygenic photosynthesis, and they are the ancestors of plant plastids. All plastids contain the plastid terminal oxidase (PTOX), while only certain cyanobacteria contain PTOX. Many putative functions have been discussed for PTOX in higher plants including a photoprotective role during abiotic stresses like high light, salinity and extreme temperatures. Since PTOX oxidizes PQH and reduces oxygen to water, it is thought to protect against photo-oxidative damage by removing excess electrons from the plastoquinone (PQ) pool. To investigate the role of PTOX we overexpressed rice PTOX fused to the maltose-binding protein (MBP-OsPTOX) in sp. PCC 6803, a model cyanobacterium that does not encode PTOX. The fusion was highly expressed and OsPTOX was active, as shown by chlorophyll fluorescence and P absorption measurements. The presence of PTOX led to a highly oxidized state of the NAD(P)H/NAD(P) pool, as detected by NAD(P)H fluorescence. Moreover, in the PTOX overexpressor the electron transport capacity of PSI relative to PSII was higher, indicating an alteration of the photosystem I (PSI) to photosystem II (PSII) stoichiometry. We suggest that PTOX controls the expression of responsive genes of the photosynthetic apparatus in a different way from the PQ/PQH ratio.This article is part of the themed issue 'Enhancing photosynthesis in crop plants: targets for improvement'.
蓝细菌是进行产氧光合作用的最古老生物,也是植物质体的祖先。所有质体都含有质体末端氧化酶(PTOX),而只有某些蓝细菌含有PTOX。关于高等植物中PTOX的许多假定功能已经被讨论过,包括在高光、盐度和极端温度等非生物胁迫期间的光保护作用。由于PTOX氧化PQH并将氧气还原为水,因此人们认为它通过从质体醌(PQ)池中去除多余电子来防止光氧化损伤。为了研究PTOX的作用,我们在不编码PTOX的模式蓝细菌集胞藻PCC 6803中过表达了与麦芽糖结合蛋白融合的水稻PTOX(MBP-OsPTOX)。如叶绿素荧光和P吸收测量所示,该融合蛋白高度表达且OsPTOX具有活性。通过NAD(P)H荧光检测发现,PTOX的存在导致NAD(P)H/NAD(P)池处于高度氧化状态。此外,在PTOX过表达体中,相对于PSII,PSI的电子传递能力更高,这表明光系统I(PSI)与光系统II(PSII)的化学计量发生了改变。我们认为,PTOX以与PQ/PQH比率不同的方式控制光合装置响应基因的表达。本文是主题为“提高作物光合作用:改进目标”的特刊的一部分。