Almeida João Paulo, Ruiz-Treviño Armando S, Shetty Sathwik R, Omay Sacit B, Anand Vijay K, Schwartz Theodore H
Department of Neurosurgery, Weill Cornell Medical College, New York Presbyterian Hospital, 525 East 68th St., Box #99, New York, NY, 10065, USA.
Department of Otorhinolaryngology, Weill Cornell Medical College, New York Presbyterian Hospital, 525 East 68th St., Box #99, New York, NY, 10065, USA.
Acta Neurochir (Wien). 2017 Oct;159(10):1893-1907. doi: 10.1007/s00701-017-3296-8. Epub 2017 Aug 14.
The availability of minimal access instrumentation and endoscopic visualization has revolutionized the field of minimally invasive skull base surgery. The transorbital endoscopic approach using an eyelid incision has been proposed as a new minimally invasive technique for the treatment of skull base pathology, mostly extradural tumors. Our study aims to evaluate the anatomical aspects and potential role of the transorbital endoscopic approach for exposure of the sylvian fissure, middle cerebral artery and crural cistern.
An anatomical dissection was performed in four freshly injected cadaver heads (8 orbits) using 0- and 30-degree endoscopes. First, an endoscopic endonasal medial orbital decompression was done to facilitate medial retraction of the orbit. An endoscopic transorbital approach through an eyelid incision, with drilling of the posterior wall of the orbit and lesser sphenoidal wing, was then performed to expose the sylvian fissure and crural cisterns. A stepwise anatomical description of the approach and visualized anatomy is detailed.
A superior eyelid incision followed by orbital retraction provided a surgical window of approximately 1.2 cm (range 1.0-1.5 cm) for endoscopic transorbital dissection. The superior (SOF) and inferior (IOF) orbital fissures represent the medial limits of the approach and are identified in the initial part of the procedure. Drilling of the orbital roof (lateral and superior to the SOF), greater sphenoidal wing (lateral to the SOF and IOF) and lesser sphenoidal wing exposed the anterior and middle fossa dura. A square-shaped dural opening provided visualization of the posterior orbital gyri, sylvian fissure and temporal pole. Intradural dissection allowed exposure of the sphenoidal portion of the sylvian fissure, M1, MCA bifurcation and M2 branches and lenticulostriate perforators. Dissection of the medial aspect of the sylvian and carotid cisterns with a 30-degree endoscope allowed exposure of the mesial temporal lobe and crural cistern.
The transorbital endoscopic approach allows successful exposure of the sphenoidal portion of the sylvian fissure and M1 and M2 segments of the middle cerebral artery. Angled endoscopes may provide visualization of the mesial temporal lobe and crural cistern. Although our anatomical study demonstrates the feasibility of intradural dissection and closure via an endoscopic transorbital approach, further studies are necessary to evaluate its role in the clinical scenario.
微创器械和内镜可视化技术的出现彻底改变了微创颅底外科领域。经眼睑切口的经眶内镜入路已被提出作为一种治疗颅底病变(主要是硬膜外肿瘤)的新型微创技术。我们的研究旨在评估经眶内镜入路暴露外侧裂、大脑中动脉和脚间池的解剖学特点及潜在作用。
使用0度和30度内镜对4个新鲜灌注的尸体头部(8个眼眶)进行解剖。首先,进行内镜下鼻内侧眶减压以利于眶内侧牵拉。然后通过眼睑切口进行经眶内镜入路,磨除眶后壁和蝶骨小翼,以暴露外侧裂和脚间池。详细描述了该入路的逐步解剖过程及可视化解剖结构。
上睑切口并牵拉眼眶后,为经眶内镜解剖提供了约1.2厘米(范围1.0 - 1.5厘米)的手术窗口。眶上裂(SOF)和眶下裂(IOF)代表该入路的内侧界限,在手术初始阶段即可识别。磨除眶顶(SOF外侧和上方)、蝶骨大翼(SOF和IOF外侧)和蝶骨小翼可暴露前颅窝和中颅窝硬脑膜。方形硬脑膜开口可显露眶后回、外侧裂和颞极。硬膜内解剖可暴露外侧裂的蝶骨部分、M1段、大脑中动脉分叉处和M2分支以及豆纹动脉穿支。使用30度内镜解剖外侧裂和颈动脉池内侧可暴露颞叶内侧和脚间池。
经眶内镜入路能够成功暴露外侧裂的蝶骨部分以及大脑中动脉的M1和M2段。角度内镜可提供颞叶内侧和脚间池的可视化。尽管我们的解剖学研究证明了经眶内镜入路进行硬膜内解剖和闭合的可行性,但仍需进一步研究以评估其在临床中的作用。