Suppr超能文献

力渗透收缩活性凝胶。

Force percolation of contractile active gels.

机构信息

Systems Biophysics Department, AMOLF, 1098 XG Amsterdam, The Netherlands.

出版信息

Soft Matter. 2017 Aug 30;13(34):5624-5644. doi: 10.1039/c7sm00834a.

Abstract

Living systems provide a paradigmatic example of active soft matter. Cells and tissues comprise viscoelastic materials that exert forces and can actively change shape. This strikingly autonomous behavior is powered by the cytoskeleton, an active gel of semiflexible filaments, crosslinks, and molecular motors inside cells. Although individual motors are only a few nm in size and exert minute forces of a few pN, cells spatially integrate the activity of an ensemble of motors to produce larger contractile forces (∼nN and greater) on cellular, tissue, and organismal length scales. Here we review experimental and theoretical studies on contractile active gels composed of actin filaments and myosin motors. Unlike other active soft matter systems, which tend to form ordered patterns, actin-myosin systems exhibit a generic tendency to contract. Experimental studies of reconstituted actin-myosin model systems have long suggested that a mechanical interplay between motor activity and the network's connectivity governs this contractile behavior. Recent theoretical models indicate that this interplay can be understood in terms of percolation models, extended to include effects of motor activity on the network connectivity. Based on concepts from percolation theory, we propose a state diagram that unites a large body of experimental observations. This framework provides valuable insights into the mechanisms that drive cellular shape changes and also provides design principles for synthetic active materials.

摘要

生命系统提供了主动软物质的典型范例。细胞和组织包含粘弹性材料,这些材料会产生力并能主动改变形状。这种引人注目的自主行为是由细胞骨架提供动力的,细胞骨架是一种由半刚性细丝、交联物和分子马达组成的活性凝胶。尽管单个马达的尺寸只有几纳米,产生的力只有几个皮牛顿,但细胞通过空间整合一组马达的活动,在细胞、组织和生物体的长度尺度上产生更大的收缩力(约为 nN 及更大)。本文综述了由肌动蛋白丝和肌球蛋白马达组成的收缩性主动凝胶的实验和理论研究。与其他倾向于形成有序模式的主动软物质系统不同,肌动球蛋白系统表现出通用的收缩趋势。对重组肌动球蛋白模型系统的实验研究长期以来表明,马达活性和网络连通性之间的机械相互作用控制着这种收缩行为。最近的理论模型表明,这种相互作用可以用渗流模型来理解,这些模型扩展到包括马达活性对网络连通性的影响。基于渗流理论的概念,我们提出了一个状态图,将大量的实验观察结果统一起来。该框架提供了对驱动细胞形状变化的机制的深入了解,也为合成主动材料提供了设计原则。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验