Suppr超能文献

细胞大小的脂质体揭示了肌动球蛋白皮质张力如何驱动形状变化。

Cell-sized liposomes reveal how actomyosin cortical tension drives shape change.

机构信息

Institut Curie, Centre de Recherche, F-75248 Paris, France.

出版信息

Proc Natl Acad Sci U S A. 2013 Oct 8;110(41):16456-61. doi: 10.1073/pnas.1221524110. Epub 2013 Sep 24.

Abstract

Animal cells actively generate contractile stress in the actin cortex, a thin actin network beneath the cell membrane, to facilitate shape changes during processes like cytokinesis and motility. On the microscopic scale, this stress is generated by myosin molecular motors, which bind to actin cytoskeletal filaments and use chemical energy to exert pulling forces. To decipher the physical basis for the regulation of cell shape changes, here, we use a cell-like system with a cortex anchored to the outside or inside of a liposome membrane. This system enables us to dissect the interplay between motor pulling forces, cortex-membrane anchoring, and network connectivity. We show that cortices on the outside of liposomes either spontaneously rupture and relax built-up mechanical stress by peeling away around the liposome or actively compress and crush the liposome. The decision between peeling and crushing depends on the cortical tension determined by the amount of motors and also on the connectivity of the cortex and its attachment to the membrane. Membrane anchoring strongly affects the morphology of cortex contraction inside liposomes: cortices contract inward when weakly attached, whereas they contract toward the membrane when strongly attached. We propose a physical model based on a balance of active tension and mechanical resistance to rupture. Our findings show how membrane attachment and network connectivity are able to regulate actin cortex remodeling and membrane-shape changes for cell polarization.

摘要

动物细胞在细胞膜下的薄肌动蛋白网络——肌动蛋白皮层中积极产生收缩力,以促进细胞分裂和运动等过程中的形状变化。在微观尺度上,这种力是由肌球蛋白分子马达产生的,它们与肌动蛋白细胞骨架丝结合,并利用化学能量产生拉力。为了解析细胞形状变化调控的物理基础,我们在这里使用一种类似细胞的系统,其皮层锚定在脂质体膜的外部或内部。该系统使我们能够剖析马达拉力、皮层-膜锚定和网络连通性之间的相互作用。我们表明,脂质体外部的皮层要么通过围绕脂质体的剥离自发破裂并松弛积累的机械应力,要么主动压缩和压碎脂质体。剥离和压碎的决定取决于由马达数量决定的皮层张力,以及皮层的连通性及其与膜的附着。膜附着强烈影响脂质体内皮层收缩的形态:当附着较弱时,皮层向内收缩,而当附着较强时,皮层向膜收缩。我们提出了一个基于主动张力和抗破裂机械阻力平衡的物理模型。我们的研究结果表明,膜附着和网络连通性如何能够调节肌动蛋白皮层重塑和膜形状变化,以实现细胞极化。

相似文献

3
Determinants of contractile forces generated in disorganized actomyosin bundles.无规则肌动球蛋白束产生收缩力的决定因素。
Biomech Model Mechanobiol. 2015 Apr;14(2):345-55. doi: 10.1007/s10237-014-0608-2. Epub 2014 Aug 8.
6
Shape remodeling and blebbing of active cytoskeletal vesicles.活性细胞骨架囊泡的形态重塑和起泡。
Sci Adv. 2016 Apr 15;2(4):e1500465. doi: 10.1126/sciadv.1500465. eCollection 2016 Apr.
10

引用本文的文献

8
Polysaccharide functionalization reduces lipid vesicle stiffness.多糖功能化降低了脂质囊泡的刚度。
Proc Natl Acad Sci U S A. 2024 May 28;121(22):e2317227121. doi: 10.1073/pnas.2317227121. Epub 2024 May 21.

本文引用的文献

2
Monitoring actin cortex thickness in live cells.监测活细胞中的肌动蛋白皮层厚度。
Biophys J. 2013 Aug 6;105(3):570-80. doi: 10.1016/j.bpj.2013.05.057.
5
Actin cortex mechanics and cellular morphogenesis.肌动蛋白皮层力学与细胞形态发生。
Trends Cell Biol. 2012 Oct;22(10):536-45. doi: 10.1016/j.tcb.2012.07.001. Epub 2012 Aug 4.
8
Contraction mechanisms in composite active actin networks.复合活性肌动蛋白网络中的收缩机制。
PLoS One. 2012;7(7):e39869. doi: 10.1371/journal.pone.0039869. Epub 2012 Jul 2.
9
Confinement induces actin flow in a meiotic cytoplasm. confinement 诱导减数分裂细胞质中的肌动蛋白流动。
Proc Natl Acad Sci U S A. 2012 Jul 17;109(29):11705-10. doi: 10.1073/pnas.1121583109. Epub 2012 Jul 2.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验