Institut Curie, Centre de Recherche, F-75248 Paris, France.
Proc Natl Acad Sci U S A. 2013 Oct 8;110(41):16456-61. doi: 10.1073/pnas.1221524110. Epub 2013 Sep 24.
Animal cells actively generate contractile stress in the actin cortex, a thin actin network beneath the cell membrane, to facilitate shape changes during processes like cytokinesis and motility. On the microscopic scale, this stress is generated by myosin molecular motors, which bind to actin cytoskeletal filaments and use chemical energy to exert pulling forces. To decipher the physical basis for the regulation of cell shape changes, here, we use a cell-like system with a cortex anchored to the outside or inside of a liposome membrane. This system enables us to dissect the interplay between motor pulling forces, cortex-membrane anchoring, and network connectivity. We show that cortices on the outside of liposomes either spontaneously rupture and relax built-up mechanical stress by peeling away around the liposome or actively compress and crush the liposome. The decision between peeling and crushing depends on the cortical tension determined by the amount of motors and also on the connectivity of the cortex and its attachment to the membrane. Membrane anchoring strongly affects the morphology of cortex contraction inside liposomes: cortices contract inward when weakly attached, whereas they contract toward the membrane when strongly attached. We propose a physical model based on a balance of active tension and mechanical resistance to rupture. Our findings show how membrane attachment and network connectivity are able to regulate actin cortex remodeling and membrane-shape changes for cell polarization.
动物细胞在细胞膜下的薄肌动蛋白网络——肌动蛋白皮层中积极产生收缩力,以促进细胞分裂和运动等过程中的形状变化。在微观尺度上,这种力是由肌球蛋白分子马达产生的,它们与肌动蛋白细胞骨架丝结合,并利用化学能量产生拉力。为了解析细胞形状变化调控的物理基础,我们在这里使用一种类似细胞的系统,其皮层锚定在脂质体膜的外部或内部。该系统使我们能够剖析马达拉力、皮层-膜锚定和网络连通性之间的相互作用。我们表明,脂质体外部的皮层要么通过围绕脂质体的剥离自发破裂并松弛积累的机械应力,要么主动压缩和压碎脂质体。剥离和压碎的决定取决于由马达数量决定的皮层张力,以及皮层的连通性及其与膜的附着。膜附着强烈影响脂质体内皮层收缩的形态:当附着较弱时,皮层向内收缩,而当附着较强时,皮层向膜收缩。我们提出了一个基于主动张力和抗破裂机械阻力平衡的物理模型。我们的研究结果表明,膜附着和网络连通性如何能够调节肌动蛋白皮层重塑和膜形状变化,以实现细胞极化。