Suppr超能文献

在铂神经刺激电极上发生的电子转移过程:用于 0.566 ⩽ k ⩽ 2.3 的阴极优先、电荷平衡、双相脉冲的脉冲实验,在大鼠皮下组织中。

Electron transfer processes occurring on platinum neural stimulating electrodes: pulsing experiments for cathodic-first, charge-balanced, biphasic pulses for 0.566  ⩽  k  ⩽  2.3 in rat subcutaneous tissues.

机构信息

Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, United States of America.

出版信息

J Neural Eng. 2017 Oct;14(5):056003. doi: 10.1088/1741-2552/aa7a4a. Epub 2017 Aug 16.

Abstract

OBJECTIVE

Our mission is twofold: (1) find a way to safely inject more charge through platinum electrodes than the Shannon limit (k  =  1.75) permits and (2) nurture an interest in the neural stimulation community to understand the electron transfer process occurring on neural stimulating electrodes.

APPROACH

We report here on measurements of the electrode potential, performed on platinum neural stimulating electrodes in the subcutaneous space of an anesthetized rat under neural stimulation conditions.

MAIN RESULTS

The results for six platinum electrodes with areas ranging from 0.2 mm to 12.7 mm were similar to prior results in sulfuric acid, except that the measured potentials were shifted negative 0.36 V because of the pH difference between the two media. The anodic 'end' potential, measured at t  =  20 ms after the onset of the biphasic current pulse, was the primary focus of the data collected because previous results had shown that as charge injection crosses the Shannon limit (k  =  1.75), this potential moves into a range where platinum surface oxidation and dissolution is likely to occur. The behavior of V (t  =  20 ms) over a range of electrode surface areas studied was consistent with our sulfuric acid study. Implicit, but little noticed, in Shannon's formulation is that small and large platinum electrodes behave the same in terms of k value; our data supports this idea.

SIGNIFICANCE

We hypothesize that the k  =  1.75 Shannon limit for safe stimulation designates a charge-injection boundary above which platinum toxicity becomes a relevant consideration for living cells around an electrode, a possibility that can be directly tested, and is a vital step forward in mission (1).

摘要

目的

我们的任务有两个:(1)找到一种方法,通过铂电极安全地注入比 Shannon 极限(k=1.75)允许的更多的电荷量;(2)培养神经刺激界对理解在神经刺激电极上发生的电子转移过程的兴趣。

方法

我们在此报告了在麻醉大鼠皮下空间中,在神经刺激条件下对铂神经刺激电极进行的电极电位测量结果。

主要结果

对于面积范围从 0.2mm 到 12.7mm 的六个铂电极,结果与硫酸中的先前结果相似,只是由于两种介质之间的 pH 差异,测量的电位被负移了 0.36V。在双相电流脉冲开始后 20ms 测量的阳极“末端”电位是收集数据的主要关注点,因为先前的结果表明,随着电荷注入超过 Shannon 极限(k=1.75),该电位进入铂表面氧化和溶解可能发生的范围。在研究的一系列电极表面积范围内,V(t=20ms)的行为与我们的硫酸研究一致。在 Shannon 公式中隐含但很少被注意到的是,小和大的铂电极在 k 值方面表现相同;我们的数据支持这个想法。

意义

我们假设 Shannon 极限 k=1.75 用于安全刺激设计,指定了一个电荷注入边界,超过该边界,铂毒性成为电极周围活细胞的一个相关考虑因素,这是一个可以直接测试的可能性,也是任务(1)向前迈出的重要一步。

相似文献

6
Electrochemical performance of platinum electrodes within the multi-electrode spiral nerve cuff.
Australas Phys Eng Sci Med. 2014 Sep;37(3):525-33. doi: 10.1007/s13246-014-0282-9. Epub 2014 Jun 18.
9
Direct measurement of oxygen reduction reactions at neurostimulation electrodes.
J Neural Eng. 2022 Jun 27;19(3). doi: 10.1088/1741-2552/ac77c0.
10
Electrical stimulation with pt electrodes. IV. Factors influencing Pt dissolution in inorganic saline.
Biomaterials. 1980 Jul;1(3):129-34. doi: 10.1016/0142-9612(80)90034-4.

引用本文的文献

1
PEDOT:PSS-coated platinum electrodes for neural stimulation.
APL Bioeng. 2023 Dec 5;7(4):046117. doi: 10.1063/5.0153094. eCollection 2023 Dec.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验