Bioelectronics Materials and Devices Laboratory, Central European Institute of Technology CEITEC, Brno University of Technology, Purkyňova 123, 61200 Brno, Czech Republic.
Institute of Neuroelectronics, Technical University of Munich, Munich, Germany.
J Neural Eng. 2022 Jun 27;19(3). doi: 10.1088/1741-2552/ac77c0.
. Electric stimulation delivered by implantable electrodes is a key component of neural engineering. While factors affecting long-term stability, safety, and biocompatibility are a topic of continuous investigation, a widely-accepted principle is that charge injection should be reversible, with no net electrochemical products forming. We want to evaluate oxygen reduction reactions (ORR) occurring at different electrode materials when using established materials and stimulation protocols.. As stimulation electrodes, we have tested platinum, gold, tungsten, nichrome, iridium oxide, titanium, titanium nitride, and poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate). We use cyclic voltammetry and voltage-step amperometry in oxygenated versus inert conditions to establish at which potentials ORR occurs, and the magnitudes of diffusion-limited ORR currents. We also benchmark the areal capacitance of each electrode material. We use amperometric probes (Clark-type electrodes) to quantify the Oand HOconcentrations in the vicinity of the electrode surface. Oand HOconcentrations are measured while applying DC current, or various biphasic charge-balanced pulses of amplitude in the range 10-30C cm/phase. To corroborate experimental measurements, we employ finite element modelling to recreate 3D gradients of Oand HO.. All electrode materials support ORR and can create hypoxic conditions near the electrode surface. We find that electrode materials differ significantly in their onset potentials for ORR, and in the extent to which they produce HOas a by-product. A key result is that typical charge-balanced biphasic pulse protocols do lead to irreversible ORR. Some electrodes induce severely hypoxic conditions, others additionally produce an accumulation of hydrogen peroxide into the mM range.. Our findings highlight faradaic ORR as a critical consideration for neural interface devices and show that the established biphasic/charge-balanced approach does not prevent irreversible changes in Oconcentrations. Hypoxia and HOcan result in different (electro)physiological consequences.
. 植入式电极传递的电刺激是神经工程的关键组成部分。虽然影响长期稳定性、安全性和生物相容性的因素是持续研究的主题,但一个被广泛接受的原则是电荷注入应该是可逆的,不会形成任何净电化学产物。我们想评估不同电极材料在使用既定材料和刺激方案时发生的氧还原反应 (ORR)。作为刺激电极,我们已经测试了铂、金、钨、镍铬合金、氧化铱、钛、氮化钛和聚(3,4-亚乙基二氧噻吩):聚(苯乙烯磺酸盐)。我们在含氧和惰性条件下使用循环伏安法和电压阶跃安培法来确定 ORR 在哪个电位下发生,以及扩散限制的 ORR 电流的幅度。我们还基准了每个电极材料的比电容。我们使用安培计探头(Clark 型电极)来量化电极表面附近的 O 和 HO 浓度。在施加直流电流或幅度在 10-30C cm/相范围内的各种双相平衡脉冲时,测量 O 和 HO 浓度。为了验证实验测量,我们采用有限元建模来重现 O 和 HO 的 3D 梯度。所有电极材料都支持 ORR,并能在电极表面附近产生缺氧条件。我们发现,电极材料的 ORR 起始电位和产生 HO 作为副产物的程度有很大差异。一个关键结果是,典型的平衡双相脉冲方案确实会导致不可逆的 ORR。一些电极导致严重的缺氧条件,其他电极则会导致过氧化氢积累到 mM 范围。我们的研究结果强调了法拉第 ORR 是神经接口设备的一个关键考虑因素,并表明既定的双相/电荷平衡方法并不能防止 O 浓度的不可逆变化。缺氧和 HO 可能会导致不同的(电)生理后果。