Suppr超能文献

通过调节专家角色来改善二元机器人训练期间的运动技能转移。

Improving motor skill transfer during dyadic robot training through the modulation of the expert role.

作者信息

Galofaro Elisa, Morasso Pietro, Zenzeri Jacopo

出版信息

IEEE Int Conf Rehabil Robot. 2017 Jul;2017:78-83. doi: 10.1109/ICORR.2017.8009225.

Abstract

In daily life it is necessary to learn skills that can be applied in different tasks and different contexts. Usually these skills are acquired by observation or by direct physical training with another expert person. The critical point is to know which is the best possible way to achieve this knowledge acquisition. In this work we have proposed a collaborative environment where subjects with different levels of expertise have to interact through the use of a robotic platform. A motor skill learning algorithm has been designed in order to allow the less skilled subjects-naïves-to explore the virtual environment and to exploit the advantages of working with a skilled partner. Results show that the correct trade - off between exploration and exploitation, provided by the implemented algorithm applied during the dyadic training, allows a group of naive subjects to learn the task and generalize better the acquired skills respect to subjects trained without the proposed algorithm.

摘要

在日常生活中,学习可应用于不同任务和不同情境的技能是很有必要的。通常,这些技能是通过观察或与另一位专家直接进行实际训练来获得的。关键在于要知道实现这种知识获取的最佳途径是什么。在这项工作中,我们提出了一种协作环境,在其中具有不同专业水平的主体必须通过使用机器人平台进行交互。设计了一种运动技能学习算法,以便让技能较低的主体(新手)探索虚拟环境,并利用与熟练伙伴合作的优势。结果表明,在二元训练期间应用所实施的算法所提供的探索与利用之间的正确权衡,使得一组新手主体能够学习任务,并比没有使用所提出算法进行训练的主体更好地将所获得的技能进行泛化。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验