Suppr超能文献

基于机器人的触觉二元组中的运动学习:综述

Motor Learning in Robot-Based Haptic Dyads: A Review.

作者信息

Waters Erica L, Johnson Michelle J

出版信息

IEEE Trans Haptics. 2024 Oct-Dec;17(4):510-527. doi: 10.1109/TOH.2024.3379035. Epub 2024 Dec 19.

Abstract

Rehabilitation robots have the potential to alleviate the global burden of neurorehabilitation. Robot-based multiplayer gaming with virtual and haptic interaction may improve motivation, engagement, and implicit learning in robotic therapy. Over the past few years, there has been growing interest in robot mediated haptic dyads, or human-robot-robot-human interaction. The effect of such a paradigm on motor learning in general and specifically for individuals with motor and/or cognitive impairments is an open area of research. We reviewed the literature to investigate the effect of a robot-based haptic dyad on motor learning. Thirty-eight articles met the inclusion criteria for this review. We summarize study characteristics including device, haptic rendering, and experimental task. Our main findings indicate that dyadic training's impact on motor learning is inconsistent in that some studies show significant improvement of motor training while others show no influence. We also find that the relative skill level of the partner and interaction characteristics such as stiffness of connection and availability of visual information influence motor learning outcomes. We discuss implications for neurorehabilitation and conclude that additional research is needed to determine optimal interaction characteristics for motor learning and to extend this research to individuals with cognitive and motor impairments.

摘要

康复机器人有潜力减轻全球神经康复负担。基于机器人的多人游戏,具备虚拟和触觉交互,可能会改善机器人疗法中的动机、参与度和隐性学习。在过去几年里,人们对机器人介导的触觉二元组,即人-机器人-机器人-人交互的兴趣与日俱增。这种范式对一般运动学习的影响,特别是对有运动和/或认知障碍个体的影响,仍是一个有待研究的领域。我们回顾了文献,以研究基于机器人的触觉二元组对运动学习的影响。38篇文章符合本次综述的纳入标准。我们总结了研究特征,包括设备、触觉渲染和实验任务。我们的主要发现表明,二元训练对运动学习的影响并不一致,因为一些研究显示运动训练有显著改善,而另一些研究则显示没有影响。我们还发现,伙伴的相对技能水平以及交互特征,如连接的刚度和视觉信息的可用性,会影响运动学习结果。我们讨论了对神经康复的影响,并得出结论,需要进一步研究以确定运动学习的最佳交互特征,并将这项研究扩展到有认知和运动障碍的个体。

相似文献

1
Motor Learning in Robot-Based Haptic Dyads: A Review.
IEEE Trans Haptics. 2024 Oct-Dec;17(4):510-527. doi: 10.1109/TOH.2024.3379035. Epub 2024 Dec 19.
4
Motor learning perspectives on haptic training for the upper extremities.
IEEE Trans Haptics. 2014 Apr-Jun;7(2):240-50. doi: 10.1109/TOH.2013.2297102.
5
Virtual Reality Environments and Haptic Strategies to Enhance Implicit Learning and Motivation in Robot-Assisted Training.
IEEE Int Conf Rehabil Robot. 2019 Jun;2019:760-765. doi: 10.1109/ICORR.2019.8779420.
6
Music meets robotics: a prospective randomized study on motivation during robot aided therapy.
J Neuroeng Rehabil. 2018 Aug 16;15(1):79. doi: 10.1186/s12984-018-0413-8.
7
Effect of Dyadic Haptic Collaboration on Ankle Motor Learning and Task Performance.
IEEE Trans Neural Syst Rehabil Eng. 2023;31:416-425. doi: 10.1109/TNSRE.2022.3225759. Epub 2023 Feb 1.
8
Haptic Error Modulation Outperforms Visual Error Amplification When Learning a Modified Gait Pattern.
Front Neurosci. 2019 Feb 19;13:61. doi: 10.3389/fnins.2019.00061. eCollection 2019.
9
Teaching Motor Skills Without a Motor: A Semi-Passive Robot to Facilitate Learning.
IEEE Trans Haptics. 2024 Jul-Sep;17(3):346-359. doi: 10.1109/TOH.2023.3330368. Epub 2024 Sep 19.
10
Dyad motor learning in a wrist-robotic environment: Learning together is better than learning alone.
Hum Mov Sci. 2024 Feb;93:103172. doi: 10.1016/j.humov.2023.103172. Epub 2024 Jan 1.

本文引用的文献

1
Visual accuracy dominates over haptic speed for state estimation of a partner during collaborative sensorimotor interactions.
J Neurophysiol. 2023 Jul 1;130(1):23-42. doi: 10.1152/jn.00053.2023. Epub 2023 May 31.
2
The Impact of Stiffness in Bimanual Versus Dyadic Interactions Requiring Force Exchange.
IEEE Trans Haptics. 2023 Oct-Dec;16(4):609-615. doi: 10.1109/TOH.2023.3274584. Epub 2023 Dec 21.
5
Physically interacting humans regulate muscle coactivation to improve visuo-haptic perception.
J Neurophysiol. 2023 Feb 1;129(2):494-499. doi: 10.1152/jn.00420.2022. Epub 2023 Jan 18.
6
For Motion Assistance Humans Prefer to Rely on a Robot Rather Than on an Unpredictable Human.
IEEE Open J Eng Med Biol. 2020 Apr 16;1:133-139. doi: 10.1109/OJEMB.2020.2987885. eCollection 2020.
7
Human-machine-human interaction in motor control and rehabilitation: a review.
J Neuroeng Rehabil. 2021 Dec 27;18(1):183. doi: 10.1186/s12984-021-00974-5.
8
Mutual Skill Learning and Adaptability to Others via Haptic Interaction.
Front Neurorobot. 2021 Dec 2;15:760132. doi: 10.3389/fnbot.2021.760132. eCollection 2021.
10
Cognitive Demands Influence Upper Extremity Motor Performance During Recovery From Acute Stroke.
Neurology. 2021 May 25;96(21):e2576-e2586. doi: 10.1212/WNL.0000000000011992. Epub 2021 Apr 15.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验