Gouin Kenneth, Peck Kiel, Antes Travis, Johnson Jennifer Leigh, Li Chang, Vaturi Sharon Denise, Middleton Ryan, de Couto Geoff, Walravens Ann-Sophie, Rodriguez-Borlado Luis, Smith Rachel Ruckdeschel, Marbán Linda, Marbán Eduardo, Ibrahim Ahmed Gamal-Eldin
Heart Institute, Cedars Sinai Medical Center, Los Angeles, CA, USA.
Capricor Therapeutics Institute, Beverly Hills, CA, USA.
J Extracell Vesicles. 2017 Aug 9;6(1):1347019. doi: 10.1080/20013078.2017.1347019. eCollection 2017.
Reverse transcription-quantitative polymerase chain reaction (RT-qPCR) is one of the most sensitive, economical and widely used methods for evaluating gene expression. However, the utility of this method continues to be undermined by a number of challenges including normalization using appropriate reference genes. The need to develop tailored and effective strategies is further underscored by the burgeoning field of extracellular vesicle (EV) biology. EVs contain unique signatures of small RNAs including microRNAs (miRs). In this study we develop and validate a comprehensive strategy for identifying highly stable reference genes in a therapeutically relevant cell type, cardiosphere-derived cells. Data were analysed using the four major approaches for reference gene evaluation: NormFinder, GeNorm, BestKeeper and the Delta Ct method. The weighted geometric mean of all of these methods was obtained for the final ranking. Analysis of RNA sequencing identified miR-101-3p, miR-23a-3p and a previously identified EV reference gene, miR-26a-5p. Analysis of a chip-based method (NanoString) identified miR-23a, miR-217 and miR-379 as stable candidates. RT-qPCR validation revealed that the mean of miR-23a-3p, miR-101-3p and miR-26a-5p was the most stable normalization strategy. Here, we demonstrate that a comprehensive approach of a diverse data set of conditions using multiple algorithms reliably identifies stable reference genes which will increase the utility of gene expression evaluation of therapeutically relevant EVs.
逆转录定量聚合酶链反应(RT-qPCR)是评估基因表达最灵敏、经济且应用广泛的方法之一。然而,该方法的实用性仍受到诸多挑战的影响,包括使用合适的内参基因进行标准化。细胞外囊泡(EV)生物学这一新兴领域进一步凸显了制定针对性有效策略的必要性。EV包含独特的小RNA特征,包括微小RNA(miR)。在本研究中,我们开发并验证了一种全面的策略,用于在具有治疗相关性的细胞类型——心脏球衍生细胞中鉴定高度稳定的内参基因。使用四种评估内参基因的主要方法对数据进行分析:NormFinder、GeNorm、BestKeeper和ΔCt法。通过这些方法的加权几何平均值进行最终排名。RNA测序分析确定了miR-101-3p、miR-23a-3p以及先前确定的EV内参基因miR-26a-5p。基于芯片的方法(NanoString)分析确定miR-23a、miR-217和miR-379为稳定候选基因。RT-qPCR验证表明,miR-23a-3p、miR-101-3p和miR-26a-5p的平均值是最稳定的标准化策略。在此,我们证明,使用多种算法对不同条件的数据集采用综合方法能够可靠地鉴定出稳定的内参基因,这将提高具有治疗相关性的EV基因表达评估的实用性。