Suppr超能文献

羊膜间充质基质细胞释放的细胞外囊泡中的miRNA参考基因

miRNA Reference Genes in Extracellular Vesicles Released from Amniotic Membrane-Derived Mesenchymal Stromal Cells.

作者信息

Ragni Enrico, Perucca Orfei Carlotta, Silini Antonietta Rosa, Colombini Alessandra, Viganò Marco, Parolini Ornella, de Girolamo Laura

机构信息

IRCCS Istituto Ortopedico Galeazzi, Laboratorio di Biotecnologie Applicate all'Ortopedia, Via R. Galeazzi 4, I-20161 Milano, Italy.

Centro di Ricerca E. Menni, Fondazione Poliambulanza Istituto Ospedaliero, Via Bissolati 57, I-25124 Brescia, Italy.

出版信息

Pharmaceutics. 2020 Apr 11;12(4):347. doi: 10.3390/pharmaceutics12040347.

Abstract

Human amniotic membrane and amniotic membrane-derived mesenchymal stromal cells (hAMSCs) have produced promising results in regenerative medicine, especially for the treatment of inflammatory-based diseases and for different injuries including those in the orthopedic field such as tendon disorders. hAMSCs have been proposed to exert their anti-inflammatory and healing potential via secreted factors, both free and conveyed within extracellular vesicles (EVs). In particular, EV miRNAs are considered privileged players due to their impact on target cells and tissues, and their future use as therapeutic molecules is being intensely investigated. In this view, EV-miRNA quantification in either research or future clinical products has emerged as a crucial paradigm, although, to date, largely unsolved due to lack of reliable reference genes (RGs). In this study, a panel of thirteen putative miRNA RGs (let-7a-5p, miR-16-5p, miR-22-5p, miR-23a-3p, miR-26a-5p, miR-29a-5p, miR-101-3p, miR-103a-3p, miR-221-3p, miR-423-5p, miR-425-5p, miR-660-5p and U6 snRNA) that were identified in different EV types was assessed in hAMSC-EVs. A validated experimental pipeline was followed, sifting the output of four largely accepted algorithms for RG prediction (geNorm, NormFinder, BestKeeper and ΔCt method). Out of nine RGs constitutively expressed across all EV isolates, miR-101-3p and miR-22-5p resulted in the most stable RGs, whereas miR-423-5p and U6 snRNA performed poorly. miR-22-5p was also previously reported to be a reliable RG in adipose-derived MSC-EVs, suggesting its suitability across samples isolated from different MSC types. Further, to shed light on the impact of incorrect RG choice, the level of five tendon-related miRNAs (miR-29a-3p, miR-135a-5p, miR-146a-5p, miR-337-3p, let-7d-5p) was compared among hAMSC-EVs isolates. The use of miR-423-5p and U6 snRNA did not allow a correct quantification of miRNA incorporation in EVs, leading to less accurate fingerprinting and, if used for potency prediction, misleading indication of the most appropriate clinical batch. These results emphasize the crucial importance of RG choice for EV-miRNAs in hAMSCs studies and contribute to the identification of reliable RGs such as miR-101-3p and miR-22-5p to be validated in other MSC-EVs related fields.

摘要

人羊膜和羊膜来源的间充质基质细胞(hAMSCs)在再生医学领域已取得了令人瞩目的成果,特别是在治疗炎症性疾病以及包括骨科领域肌腱疾病等不同损伤方面。有人提出hAMSCs通过分泌的因子发挥其抗炎和愈合潜力,这些因子包括游离的以及包裹在细胞外囊泡(EVs)中的。特别是,EV miRNAs因其对靶细胞和组织的影响而被视为关键角色,并且对其作为治疗分子的未来应用正在进行深入研究。从这个角度来看,无论是在研究还是未来的临床产品中,EV-miRNA的定量已成为一个关键范例,然而,由于缺乏可靠的内参基因(RGs),到目前为止,这一问题在很大程度上尚未得到解决。在本研究中,对在不同EV类型中鉴定出的一组13个假定的miRNA内参基因(let-7a-5p、miR-16-5p、miR-22-5p、miR-23a-3p、miR-26a-5p、miR-29a-5p、miR-101-3p、miR-103a-3p、miR-221-3p、miR-423-5p、miR-425-5p、miR-660-5p和U6 snRNA)在hAMSC-EVs中进行了评估。遵循了一个经过验证的实验流程,筛选了四种广泛认可的用于内参基因预测的算法(geNorm、NormFinder、BestKeeper和ΔCt法)的输出结果。在所有EV分离物中组成性表达的9个内参基因中,miR-101-3p和miR-22-5p是最稳定的内参基因,而miR-423-5p和U6 snRNA表现不佳。之前也有报道称miR-22-5p是脂肪来源的MSC-EVs中一个可靠的内参基因,这表明它适用于从不同MSC类型分离的样本。此外,为了阐明错误选择内参基因的影响,比较了hAMSC-EVs分离物中5种与肌腱相关的miRNA(miR-29a-3p、miR-135a-5p、miR-146a-5p、miR-337-3p、let-7d-5p)的水平。使用miR-423-5p和U6 snRNA无法正确定量EVs中miRNA的掺入情况,导致指纹图谱不够准确,如果用于效力预测,则会对最合适的临床批次产生误导性指示。这些结果强调了在hAMSCs研究中选择内参基因对EV-miRNAs的至关重要性,并有助于鉴定可靠的内参基因,如miR-101-3p和miR-22-5p,以便在其他与MSC-EVs相关的领域进行验证。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验