Suppr超能文献

Muscarinic-agonist and guanine nucleotide activation of polyphosphoinositide phosphodiesterase in isolated islet-cell membranes.

作者信息

Dunlop M E, Larkins R G

出版信息

Biochem J. 1986 Dec 15;240(3):731-7. doi: 10.1042/bj2400731.

Abstract

Stimulated hydrolysis of the inositol phospholipids phosphatidylinositol 4-phosphate (PtdIns4P) and phosphatidylinositol 4,5-bisphosphate [PtdIns(4,5)P2] was investigated by studying the phosphoinositides produced in a suspended preparation of plasma membranes by transference of 32P from [gamma-32P]ATP. At basal Ca2+ concentration (calculated free Ca2+, 150 nM) phospholipid hydrolysis was stimulated either by the muscarinic agonists carbamoylcholine and bethanecol or by the addition of the non-hydrolysable analogue of GTP, guanosine 5'-[beta gamma-imido]triphosphate [p(NH)ppG]. GTP was without effect on basal hyrolysis. Both GTP and p(NH)ppG enhanced the rapid (within 10 s) hydrolysis of PtdIns4P and PtdIns(4,5)P2 induced by carbamoylcholine in a dose-dependent manner. A rightward shift in the competition curve of carbamoylcholine for bound L-[3H]quinuclidinyl benzilate was seen on addition of GTP or p(NH)ppG (100 microM) under phosphorylating conditions. Pretreatment of intact islet cells with Bordetella pertussis toxin, islet-activating protein (IAP) or treatment of membranes with IAP under conditions which elicited ADP-ribosylation of a protein of Mr 41,000 was without effect on muscarinic binding, phosphoinositide phosphorylation or subsequent hydrolysis by carbamoylcholine. The findings indicate the involvement of a GTP-binding protein in the coupling of the muscarinic receptor to phosphoinositide hydrolysis in the islet cell and suggest that this is distinct from the GTP-binding regulatory component of adenylate cyclase which is covalently modified by IAP.

摘要
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/268b/1147480/a86d620b690b/biochemj00265-0113-a.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验