Torbatian Z, Asgari R
School of Nano Science, Institute for Research in Fundamental Sciences (IPM), Tehran 19395-5531, Iran.
J Phys Condens Matter. 2017 Nov 22;29(46):465701. doi: 10.1088/1361-648X/aa86b9.
We explore the collective electronic excitations of bilayer molybdenum disulfide (MoS) using density functional theory together with random phase approximation. The many-body dielectric function and electron energy-loss spectra are calculated using an ab initio based model involving material-realistic physical properties. The electron energy-loss function of the bilayer MoS system is found to be sensitive to either electron or hole doping and this is due to the fact that the Kohn-Sham band dispersions are not symmetric for energies above and below the zero Fermi level. Three plasmon modes are predicted, a damped high-energy mode, one optical mode (in-phase mode) for which the plasmon dispersion exhibits [Formula: see text] in the long wavelength limit originating from low-energy electron scattering and finally a highly damped acoustic mode (out-of-phase mode).
我们使用密度泛函理论结合随机相位近似来探究双层二硫化钼(MoS)的集体电子激发。利用一个基于第一性原理且包含符合材料实际物理性质的模型来计算多体介电函数和电子能量损失谱。发现双层MoS系统的电子能量损失函数对电子或空穴掺杂敏感,这是因为对于零费米能级之上和之下的能量,Kohn-Sham能带色散不对称。预测了三种等离子体激元模式:一种是衰减的高能模式,一种光学模式(同相模式),其等离子体激元色散在长波长极限下呈现[公式:见原文],源于低能电子散射,最后是一种高度衰减的声学模式(异相模式)。