Suppr超能文献

固态 NMR 揭示细菌趋化性受体中与信号转导相关的构象变化。

Signaling-Related Mobility Changes in Bacterial Chemotaxis Receptors Revealed by Solid-State NMR.

机构信息

Department of Chemistry, ‡Program in Molecular and Cellular Biology, University of Massachusetts Amherst , Amherst, Massachusetts 01003, United States.

出版信息

J Phys Chem B. 2017 Sep 21;121(37):8693-8705. doi: 10.1021/acs.jpcb.7b06475. Epub 2017 Sep 6.

Abstract

Bacteria employ remarkable membrane-bound nanoarrays to sense their environment and direct their swimming. Arrays consist of chemotaxis receptor trimers of dimers that are bridged at their membrane-distal tips by rings of two cytoplasmic proteins, a kinase CheA and a coupling protein CheW. It is not clear how ligand binding to the periplasmic domain of the receptor deactivates the CheA kinase bound to the cytoplasmic tip ∼300 Å away, but the mechanism is thought to involve changes in dynamics within the cytoplasmic domain. To test these proposals, we applied solid-state NMR mobility-filtered experiments to functional complexes of the receptor cytoplasmic fragment (U-C,N-CF), CheA, and CheW. Assembly of these proteins into native-like, homogeneous arrays is mediated by either vesicle binding or molecular crowding agents, and paramagnetic relaxation enhancement is used to overcome sensitivity challenges in these large complexes. INEPT spectra reveal that a significant fraction of the receptor is dynamic on the nanosecond or shorter time scale, and these dynamics change with signaling state. The mobile regions are identified through a combination of biochemical and NMR approaches (protein truncations and unique chemical shifts). The INEPT spectra are consistent with an asymmetric mobility in the methylation region (N-helix mobility ≫ C-helix mobility) and reveal an increase in the mobility of the N-helix in the kinase-off state. This finding identifies functionally relevant dynamics in the receptor, and suggests that this N-helix segment plays a key role in propagating the signal.

摘要

细菌利用引人注目的膜结合纳米阵列来感知环境并指导其游动。这些阵列由化学感受器三聚体组成,每个三聚体由两个细胞质蛋白的环桥接,一个是激酶 CheA,另一个是偶联蛋白 CheW。目前尚不清楚配体与受体周质域的结合如何使与细胞质末端相隔约 300 Å 的 CheA 激酶失活,但该机制被认为涉及细胞质域内动力学的变化。为了验证这些假设,我们应用固态 NMR 流动性过滤实验研究了受体细胞质片段 (U-C,N-CF)、CheA 和 CheW 的功能复合物。这些蛋白质通过囊泡结合或分子拥挤剂组装成类似天然的、均匀的阵列,并且使用顺磁弛豫增强来克服这些大型复合物中的灵敏度挑战。INEPT 光谱表明,受体的相当一部分在纳秒或更短的时间尺度上是动态的,这些动力学随信号状态而变化。通过生化和 NMR 方法(蛋白质截断和独特的化学位移)的组合来识别可移动区域。INEPT 光谱与甲基化区域(N-螺旋的流动性 ≫ C-螺旋的流动性)不对称的流动性一致,并揭示了激酶关闭状态下 N-螺旋流动性的增加。这一发现确定了受体中与功能相关的动力学,并表明该 N-螺旋段在信号传递中起着关键作用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a609/5613836/b4fc77c01620/jp-2017-064753_0001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验