Suppr超能文献

一种用于功能脑网络的频域部分相干性和因果分析的动态回归方法。

A Dynamic Regression Approach for Frequency-Domain Partial Coherence and Causality Analysis of Functional Brain Networks.

出版信息

IEEE Trans Med Imaging. 2018 Sep;37(9):1957-1969. doi: 10.1109/TMI.2017.2739740. Epub 2017 Aug 14.

Abstract

Coherence and causality measures are often used to analyze the influence of one region on another during analysis of functional brain networks. The analysis methods usually involve a regression problem, where the signal of interest is decomposed into a mixture of regressor and a residual signal. In this paper, we revisit this basic problem and present solutions that provide the minimal-entropy residuals for different types of regression filters, such as causal, instantaneously causal, and noncausal filters. Using optimal prediction theory, we derive several novel frequency-domain expressions for partial coherence, causality, and conditional causality analysis. In particular, our solution provides a more accurate estimation of the frequency-domain causality compared with the classical Geweke causality measure. Using synthetic examples and in vivo resting-state functional magnetic resonance imaging data from the human connectome project, we show that the proposed solution is more accurate at revealing frequency-domain linear dependence among high-dimensional signals.

摘要

相干性和因果性度量常被用于分析功能脑网络中一个区域对另一个区域的影响。分析方法通常涉及回归问题,其中感兴趣的信号被分解为回归器和残差信号的混合物。在本文中,我们重新研究了这个基本问题,并提出了针对不同类型回归滤波器(如因果滤波器、即时因果滤波器和非因果滤波器)的最小熵残差的解决方案。我们使用最优预测理论,为部分相干性、因果性和条件因果性分析推导出了几个新的频域表达式。特别是,与经典的 Geweke 因果度量相比,我们的解决方案提供了对频域因果关系更准确的估计。使用合成示例和来自人类连接组计划的体内静息态功能磁共振成像数据,我们表明,所提出的解决方案在揭示高维信号之间的频域线性依赖关系方面更加准确。

相似文献

7
Canonical Granger causality between regions of interest.感兴趣区域之间的典型格兰杰因果关系。
Neuroimage. 2013 Dec;83:189-99. doi: 10.1016/j.neuroimage.2013.06.056. Epub 2013 Jun 27.
10
Bayesian networks for fMRI: a primer.贝叶斯网络在 fMRI 中的应用:入门指南。
Neuroimage. 2014 Feb 1;86:573-82. doi: 10.1016/j.neuroimage.2013.10.020. Epub 2013 Oct 18.

引用本文的文献

3
Smooth interpolation of covariance matrices and brain network estimation: Part II.协方差矩阵的平滑插值与脑网络估计:第二部分。
IEEE Trans Automat Contr. 2020 May;65(5):1901-1910. doi: 10.1109/TAC.2019.2926854. Epub 2019 Jul 4.
4
Smooth Interpolation of Covariance Matrices and Brain Network Estimation.协方差矩阵的平滑插值与脑网络估计
IEEE Trans Automat Contr. 2019 Aug;64(8):3184-3193. doi: 10.1109/tac.2018.2879597. Epub 2018 Nov 5.

本文引用的文献

1
How reliable are MEG resting-state connectivity metrics?脑磁图静息态连接性指标的可靠性如何?
Neuroimage. 2016 Sep;138:284-293. doi: 10.1016/j.neuroimage.2016.05.070. Epub 2016 Jun 1.
3
Resting-state fMRI in the Human Connectome Project.静息态功能磁共振成像在人类连接组计划中的应用。
Neuroimage. 2013 Oct 15;80:144-68. doi: 10.1016/j.neuroimage.2013.05.039. Epub 2013 May 20.
4
The WU-Minn Human Connectome Project: an overview.《WU-Minn 人类连接组计划:概述》。
Neuroimage. 2013 Oct 15;80:62-79. doi: 10.1016/j.neuroimage.2013.05.041. Epub 2013 May 16.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验