Suppr超能文献

用于脑网络条件因果分析的信息论框架。

An information-theoretic framework for conditional causality analysis of brain networks.

作者信息

Ning Lipeng

机构信息

Brigham and Women's Hospital, Boston, MA, USA.

Harvard Medical School, Boston, MA, USA.

出版信息

Netw Neurosci. 2024 Oct 1;8(3):989-1008. doi: 10.1162/netn_a_00386. eCollection 2024.

Abstract

Identifying directed network models for multivariate time series is a ubiquitous problem in data science. Granger causality measure (GCM) and conditional GCM (cGCM) are widely used methods for identifying directed connections between time series. Both GCM and cGCM have frequency-domain formulations to characterize the dependence of time series in the spectral domain. However, the original methods were developed using a heuristic approach without rigorous theoretical explanations. To overcome the limitation, the minimum-entropy (ME) estimation approach was introduced in our previous work (Ning & Rathi, 2018) to generalize GCM and cGCM with more rigorous frequency-domain formulations. In this work, this information-theoretic framework is further generalized with three formulations for conditional causality analysis using techniques in control theory, such as state-space representations and spectral factorizations. The three conditional causal measures are developed based on different ME estimation procedures that are motivated by equivalent formulations of the classical minimum mean squared error estimation method. The relationship between the three formulations of conditional causality measures is analyzed theoretically. Their performance is evaluated using simulations and real neuroimaging data to analyze brain networks. The results show that the proposed methods provide more accurate network structures than the original approach.

摘要

识别多元时间序列的有向网络模型是数据科学中一个普遍存在的问题。格兰杰因果度量(GCM)和条件格兰杰因果度量(cGCM)是用于识别时间序列之间有向连接的广泛使用的方法。GCM和cGCM都有频域公式来表征频谱域中时间序列的依赖性。然而,原始方法是使用启发式方法开发的,没有严格的理论解释。为了克服这一局限性,我们在之前的工作中(Ning & Rathi,2018)引入了最小熵(ME)估计方法,以用更严格的频域公式推广GCM和cGCM。在这项工作中,这个信息论框架通过使用控制理论中的技术(如状态空间表示和谱分解)进行条件因果分析的三种公式进一步推广。这三种条件因果度量是基于不同的ME估计程序开发的,这些程序是由经典最小均方误差估计方法的等效公式激发的。从理论上分析了条件因果度量的三种公式之间的关系。使用模拟和真实神经成像数据评估它们的性能,以分析脑网络。结果表明,所提出的方法比原始方法提供了更准确的网络结构。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e491/11424036/19973979f5d2/netn-8-3-989-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验