Department of Physical Education, University of Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Spain.
Research Institute of Biomedical and Health Sciences, University of Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Canary Islands, Spain.
J Appl Physiol (1985). 2017 Nov 1;123(5):1235-1245. doi: 10.1152/japplphysiol.00384.2017. Epub 2017 Aug 17.
The aim of this study was to determine if reactive oxygen species (ROS) could play a role in blunting Thr-AMP-activated protein kinase (AMPK)-α phosphorylation in human skeletal muscle after sprint exercise in hypoxia and to elucidate the potential signaling mechanisms responsible for this response. Nine volunteers performed a single 30-s sprint (Wingate test) in two occasions while breathing hypoxic gas ([Formula: see text] = 75 mmHg): one after the ingestion of placebo and another following the intake of antioxidants (α-lipoic acid, vitamin C, and vitamin E), with a randomized double-blind design. Vastus lateralis muscle biopsies were obtained before, immediately after, and 30- and 120-min postsprint. Compared with the control condition, the ingestion of antioxidants resulted in lower plasma carbonylated proteins, attenuated elevation of the AMP-to-ATP molar ratio, and reduced glycolytic rate ( < 0.05) without significant effects on performance or V̇o The ingestion of antioxidants did not alter the basal muscle signaling. Thr-AMPKα and Thr-transforming growth factor-β-activated kinase 1 (TAK1) phosphorylation were not increased after the sprint regardless of the ingestion of antioxidants. Thr-CaMKII phosphorylation was increased after the sprint, but this response was blunted by the antioxidants. Ser-AMPKα1/Ser-AMPKα2 phosphorylation increased immediately after the sprints coincident with increased Akt phosphorylation. In summary, antioxidants attenuate the glycolytic response to sprint exercise in severe acute hypoxia and modify the muscle signaling response to exercise. Ser-AMPKα1/Ser-AMPKα2 phosphorylation, a known mechanism of Thr-AMPKα phosphorylation inhibition, is increased immediately after sprint exercise in hypoxia, probably by a mechanism independent of ROS. The glycolytic rate is increased during sprint exercise in severe acute hypoxia. This study showed that the ingestion of antioxidants before sprint exercise in severe acute hypoxia reduced the glycolytic rate and attenuated the increases of the AMP-to-ATP and the reduction of the NAD-to-NADH.H ratios. This resulted in a modified muscle signaling response with a blunted Thr-CaMKII but similar AMP-activated protein kinase phosphorylation responses in the sprints preceded by the ingestion of antioxidants.
本研究旨在探讨活性氧(ROS)是否在低氧条件下短跑运动后,阻断人体骨骼肌 Thr-AMP 激活的蛋白激酶(AMPK)α的磷酸化中发挥作用,并阐明导致这种反应的潜在信号机制。9 名志愿者在两种情况下进行了单次 30 秒的冲刺(Wingate 测试),呼吸低氧气体 ([Formula: see text] = 75 mmHg):一次是在摄入安慰剂后,另一次是在摄入抗氧化剂(α-硫辛酸、维生素 C 和维生素 E)后,采用随机双盲设计。在冲刺前、冲刺后即刻以及冲刺后 30 分钟和 120 分钟时,取股外侧肌活检。与对照条件相比,抗氧化剂的摄入导致血浆羰基蛋白水平降低,AMP 与 ATP 摩尔比升高和糖酵解速率降低(<0.05),而对性能或 V̇o 没有显著影响。抗氧化剂的摄入不改变基础肌肉信号。无论是否摄入抗氧化剂,短跑后 Thr-AMPKα 和 Thr-转化生长因子-β激活的激酶 1(TAK1)磷酸化均未增加。Thr-CaMKII 磷酸化在冲刺后增加,但这种反应被抗氧化剂阻断。Ser-AMPKα1/Ser-AMPKα2 磷酸化在冲刺后即刻增加,与 Akt 磷酸化增加一致。总之,抗氧化剂在严重急性低氧条件下的短跑运动中减弱了糖酵解反应,并改变了运动后的肌肉信号反应。Ser-AMPKα1/Ser-AMPKα2 磷酸化是 Thr-AMPKα 磷酸化抑制的已知机制,在低氧下的冲刺运动后即刻增加,可能是一种独立于 ROS 的机制。在严重急性低氧下的冲刺运动中,糖酵解率增加。本研究表明,在严重急性低氧下的短跑运动前摄入抗氧化剂可降低糖酵解率,减弱 AMP 与 ATP 的增加和 NAD 与 NADH.H 的减少。这导致了肌肉信号反应的改变,在摄入抗氧化剂之前的冲刺中,Thr-CaMKII 的反应被阻断,但 AMP 激活的蛋白激酶的磷酸化反应相似。