Suppr超能文献

睡眠应用程序:它们在临床医学中发挥着什么作用?

Sleep apps: what role do they play in clinical medicine?

作者信息

Lorenz Christopher P, Williams Adrian J

机构信息

aSoma Analytics bThe London Sleep Centre, London, United Kingdom.

出版信息

Curr Opin Pulm Med. 2017 Nov;23(6):512-516. doi: 10.1097/MCP.0000000000000425.

Abstract

PURPOSE OF REVIEW

Today's smartphones boast more computing power than the Apollo Guidance Computer. Given the ubiquity and popularity of smartphones, are we already carrying around miniaturized sleep labs in our pockets?

RECENT FINDINGS

There is still a lack of validation studies for consumer sleep technologies in general and apps for monitoring sleep in particular. To overcome this gap, multidisciplinary teams are needed that focus on feasibility work at the intersection of software engineering, data science and clinical sleep medicine.

SUMMARY

To date, no smartphone app for monitoring sleep through movement sensors has been successfully validated against polysomnography, despite the role and validity of actigraphy in sleep medicine having been well established. Missing separation of concerns, not methodology, poses the key limiting factor: The two essential steps in the monitoring process, data collection and scoring, are chained together inside a black box due to the closed nature of consumer devices. This leaves researchers with little room for influence nor can they access raw data. Multidisciplinary teams that wield complete power over the sleep monitoring process are sorely needed.

摘要

综述目的:如今的智能手机所具备的计算能力超过了阿波罗制导计算机。鉴于智能手机的普及程度和受欢迎程度,我们是否已然在口袋里携带了小型化的睡眠实验室呢?

近期研究结果:总体而言,针对消费级睡眠技术,尤其是用于监测睡眠的应用程序,仍缺乏验证研究。为了弥补这一差距,需要多学科团队专注于软件工程、数据科学和临床睡眠医学交叉领域的可行性工作。

总结:尽管活动记录仪在睡眠医学中的作用和有效性已得到充分确立,但迄今为止,尚无通过运动传感器监测睡眠的智能手机应用程序能成功与多导睡眠图进行对比验证。问题的关键限制因素在于关注点未分离,而非方法本身:由于消费级设备的封闭特性,监测过程中的两个关键步骤,即数据收集和评分,被封装在一个黑箱中。这使得研究人员几乎没有影响力,也无法获取原始数据。因此,迫切需要对睡眠监测过程拥有完全控制权的多学科团队。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验