Suppr超能文献

非接触式床边运动和呼吸感应设备的睡眠有效性。

Sleep Validity of a Non-Contact Bedside Movement and Respiration-Sensing Device.

机构信息

Department of Psychology, West Virginia University, Morgantown, West Virginia.

Department of Biobehavioral Health, Pennsylvania State University, State College, Pennsylvania.

出版信息

J Clin Sleep Med. 2019 Jul 15;15(7):1051-1061. doi: 10.5664/jcsm.7892.

Abstract

STUDY OBJECTIVES

To assess the sleep detection and staging validity of a non-contact, commercially available bedside bio-motion sensing device (S+, ResMed) and evaluate the impact of algorithm updates.

METHODS

Polysomnography data from 27 healthy adult participants was compared epoch-by-epoch to synchronized data that were recorded and staged by actigraphy and S+. An update to the S+ algorithm (common in the rapidly evolving commercial sleep tracker industry) permitted comparison of the original (S+V1) and updated (S+V2) versions.

RESULTS

Sleep detection accuracy by S+V1 (93.3%), S+V2 (93.8%), and actigraphy (96.0%) was high; wake detection accuracy by each (69.6%, 73.1%, and 47.9%, respectively) was low. Higher overall S+ specificity, compared to actigraphy, was driven by higher accuracy in detecting wake before sleep onset (WBSO), which differed between S+V2 (90.4%) and actigraphy (46.5%). Stage detection accuracy by the S+ did not exceed 67.6% (for stage N2 sleep, by S+V2) for any stage. Performance is compared to previously established variance in polysomnography scored by humans: a performance standard which commercial devices should ideally strive to reach.

CONCLUSIONS

Similar limitations in detecting wake after sleep onset (WASO) were found for the S+ as have been previously reported for actigraphy and other commercial sleep tracking devices. S+ WBSO detection was higher than actigraphy, and S+V2 algorithm further improved WASO accuracy. Researchers and clinicians should remain aware of the potential for algorithm updates to impact validity.

COMMENTARY

A commentary on this article appears in this issue on page 935.

摘要

研究目的

评估一种非接触式、商业可用的床边生物运动感应设备(S+,ResMed)的睡眠检测和分期有效性,并评估算法更新的影响。

方法

将 27 名健康成年参与者的多导睡眠图数据逐时与同步记录和由活动计和 S+分期的同步数据进行比较。S+算法的更新(在快速发展的商业睡眠追踪器行业中很常见)允许比较原始版本(S+V1)和更新版本(S+V2)。

结果

S+V1(93.3%)、S+V2(93.8%)和活动计(96.0%)的睡眠检测准确性很高;而每个的觉醒检测准确性(分别为 69.6%、73.1%和 47.9%)较低。与活动计相比,S+的总体特异性较高,这是由于在检测睡眠开始前的觉醒(WBSO)方面的准确性较高,而 S+V2(90.4%)和活动计(46.5%)之间存在差异。S+对任何阶段的分期检测准确性都未超过 67.6%(S+V2 对 N2 期睡眠)。性能与以前多导睡眠图由人类评分的差异进行了比较:商业设备理想上应努力达到的性能标准。

结论

与活动计和其他商业睡眠追踪设备以前报道的一样,S+在检测睡眠开始后的觉醒(WASO)方面也存在类似的局限性。S+对 WBSO 的检测高于活动计,并且 S+V2 算法进一步提高了 WASO 的准确性。研究人员和临床医生应始终意识到算法更新可能会影响有效性。

注释

本文的一篇评论文章发表在本期第 935 页。

相似文献

3
Sleep Staging Monitoring Based on Sonar Smartphone Technology.基于声纳智能手机技术的睡眠分期监测
Annu Int Conf IEEE Eng Med Biol Soc. 2019 Jul;2019:2230-2233. doi: 10.1109/EMBC.2019.8857033.
9
Movement toward a novel activity monitoring device.迈向新型活动监测设备的发展。
Sleep Breath. 2012 Sep;16(3):913-7. doi: 10.1007/s11325-011-0585-y. Epub 2011 Oct 6.

引用本文的文献

5
A perspective on automated rapid eye movement sleep assessment.关于快速眼动睡眠自动评估的观点。
J Sleep Res. 2025 Apr;34(2):e14223. doi: 10.1111/jsr.14223. Epub 2024 Apr 23.
9
Clinical utility of smartphone applications for sleep physicians.智能手机应用在睡眠医师中的临床实用性。
Sleep Breath. 2023 Dec;27(6):2371-2377. doi: 10.1007/s11325-023-02851-y. Epub 2023 May 26.

本文引用的文献

3
Noncontact Pressure-Based Sleep/Wake Discrimination.基于非接触压力的睡眠/觉醒辨别
IEEE Trans Biomed Eng. 2017 Aug;64(8):1750-1760. doi: 10.1109/TBME.2016.2621066. Epub 2016 Oct 25.
6
Consumer Sleep Technologies: A Review of the Landscape.消费者睡眠技术:全景综述
J Clin Sleep Med. 2015 Dec 15;11(12):1455-61. doi: 10.5664/jcsm.5288.
9
Assessment of a wireless headband for automatic sleep scoring.无线头带自动睡眠评分评估。
Sleep Breath. 2013 May;17(2):747-52. doi: 10.1007/s11325-012-0757-4. Epub 2012 Sep 21.
10
Use of actigraphy for assessment in pediatric sleep research.使用活动记录仪评估儿科睡眠研究。
Sleep Med Rev. 2012 Oct;16(5):463-75. doi: 10.1016/j.smrv.2011.10.002. Epub 2012 Mar 15.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验