Sugiyama Kaori, Aida Tomomi, Nomura Masatoshi, Takayanagi Ryoichi, Zeilhofer Hanns U, Tanaka Kohichi
Laboratory of Molecular Neuroscience, Medical Research Institute, Tokyo Medical and Dental University, Bunkyo-ku, Tokyo 113-8510, Japan.
Department of Medicine and Bioregulatory Science, Graduate School of Medical Science, Kyushu University, Higashi-ku, Fukuoka 812-8582, Japan.
J Neurosci. 2017 Sep 6;37(36):8830-8844. doi: 10.1523/JNEUROSCI.0730-17.2017. Epub 2017 Aug 16.
Glutamate-mediated excitotoxicity induces neuronal death by altering various intracellular signaling pathways and is implicated as a common pathogenic pathway in many neurodegenerative diseases. In the case of motor neuron disease, there is significant evidence to suggest that the overactivation of AMPA receptors due to deficiencies in the expression and function of glial glutamate transporters GLT1 and GLAST plays an important role in the mechanisms of neuronal death. However, a causal role for glial glutamate transporter dysfunction in motor neuron death remains unknown. Here, we developed a new animal model of excitotoxicity by conditionally deleting astroglial glutamate transporters GLT1 and GLAST in the spinal cords of mice (GLAST/GLT1-cKO). GLAST/GLT1-cKO mice (both sexes) exhibited nuclear irregularity and calpain-mediated degradation of nuclear pore complexes (NPCs), which are responsible for nucleocytoplasmic transport. These abnormalities were associated with progressive motor neuron loss, severe paralysis, and shortened lifespan. The nuclear export inhibitor KPT-350 slowed but did not prevent motor neuron death, whereas long-term treatment of the AMPA receptor antagonist perampanel and the calpain inhibitor SNJ-1945 had more persistent beneficial effects. Thus, NPC degradation contributes to AMPA receptor-mediated excitotoxic motor neuronal death, and preventing NPC degradation has robust protective effects. Normalization of NPC function could be a novel therapeutic strategy for neurodegenerative disorders in which AMPA receptor-mediated excitotoxicity is a contributory factor. Despite glial glutamate transporter dysfunction leading to excitotoxicity has been documented in many neurological diseases, it remains unclear whether its dysfunction is a primary cause or secondary outcome of neuronal death at disease state. Here we show the combined loss of glial glutamate transporters GLT1 and GLAST in spinal cord caused motor neuronal death and hindlimb paralysis. Further, our novel mutant exhibits the nuclear irregularities and calpain-mediated progressive nuclear pore complex degradation. Our study reveals that glial glutamate transporter dysfunction is sufficient to cause motor neuronal death .
谷氨酸介导的兴奋性毒性通过改变各种细胞内信号通路诱导神经元死亡,并被认为是许多神经退行性疾病的常见致病途径。在运动神经元疾病中,有大量证据表明,由于胶质谷氨酸转运体GLT1和GLAST的表达和功能缺陷导致AMPA受体过度激活,在神经元死亡机制中起重要作用。然而,胶质谷氨酸转运体功能障碍在运动神经元死亡中的因果作用仍不清楚。在这里,我们通过有条件地删除小鼠脊髓中的星形胶质细胞谷氨酸转运体GLT1和GLAST,建立了一种新的兴奋性毒性动物模型(GLAST/GLT1-cKO)。GLAST/GLT1-cKO小鼠(雌雄均有)表现出核不规则以及钙蛋白酶介导的核孔复合体(NPCs)降解,核孔复合体负责核质运输。这些异常与进行性运动神经元丧失、严重瘫痪和寿命缩短有关。核输出抑制剂KPT-350减缓但未能阻止运动神经元死亡,而长期使用AMPA受体拮抗剂吡仑帕奈和钙蛋白酶抑制剂SNJ-1945具有更持久的有益效果。因此,NPC降解促成了AMPA受体介导的兴奋性毒性运动神经元死亡,防止NPC降解具有强大的保护作用。使NPC功能正常化可能是一种针对AMPA受体介导的兴奋性毒性起促成作用的神经退行性疾病的新型治疗策略。尽管在许多神经疾病中已证明胶质谷氨酸转运体功能障碍会导致兴奋性毒性,但在疾病状态下其功能障碍是神经元死亡的主要原因还是次要结果仍不清楚。在这里,我们表明脊髓中胶质谷氨酸转运体GLT1和GLAST的联合缺失导致运动神经元死亡和后肢麻痹。此外,我们的新型突变体表现出核不规则以及钙蛋白酶介导的核孔复合体进行性降解。我们的研究表明,胶质谷氨酸转运体功能障碍足以导致运动神经元死亡。