Suppr超能文献

CmlI N-氧化酶催化氯霉素生物合成的最后三步,中间产物不解离。

CmlI N-Oxygenase Catalyzes the Final Three Steps in Chloramphenicol Biosynthesis without Dissociation of Intermediates.

作者信息

Komor Anna J, Rivard Brent S, Fan Ruixi, Guo Yisong, Que Lawrence, Lipscomb John D

机构信息

Department of Chemistry, Carnegie Mellon University , Pittsburgh, Pennsylvania 15213, United States.

出版信息

Biochemistry. 2017 Sep 19;56(37):4940-4950. doi: 10.1021/acs.biochem.7b00695. Epub 2017 Sep 6.

Abstract

CmlI catalyzes the six-electron oxidation of an aryl-amine precursor (NH-CAM) to the aryl-nitro group of chloramphenicol (CAM). The active site of CmlI contains a (hydr)oxo- and carboxylate-bridged dinuclear iron cluster. During catalysis, a novel diferric-peroxo intermediate P is formed and is thought to directly effect oxygenase chemistry. Peroxo intermediates can facilitate at most two-electron oxidations, so the biosynthetic pathway of CmlI must involve at least three steps. Here, kinetic techniques are used to characterize the rate and/or dissociation constants for each step by taking advantage of the remarkable stability of P in the absence of substrates (decay t = 3 h at 4 °C) and the visible chromophore of the diiron cluster. It is found that diferrous CmlI (CmlI) can react with NH-CAM and O in either order to form a P-NH-CAM intermediate. P-NH-CAM undergoes rapid oxygen transfer to form a diferric CmlI (CmlI) complex with the aryl-hydroxylamine [NH(OH)-CAM] pathway intermediate. CmlI-NH(OH)-CAM undergoes a rapid internal redox reaction to form a CmlI-nitroso-CAM (NO-CAM) complex. O binding results in formation of P-NO-CAM that converts to CmlI-CAM by enzyme-mediated oxygen atom transfer. The kinetic analysis indicates that there is little dissociation of pathway intermediates as the reaction progresses. Reactions initiated by adding pathway intermediates from solution occur much more slowly than those in which the intermediate is generated in the active site as part of the catalytic process. Thus, CmlI is able to preserve efficiency and specificity while avoiding adventitious chemistry by performing the entire six-electron oxidation in one active site.

摘要

氯霉素I(CmlI)催化芳基胺前体(NH-CAM)发生六电子氧化反应,生成氯霉素(CAM)的芳基硝基。CmlI的活性位点包含一个由(氢)氧和羧酸盐桥联的双核铁簇。在催化过程中,会形成一种新型的双铁过氧中间体P,人们认为它直接影响加氧酶的化学反应。过氧中间体最多只能促进两电子氧化反应,因此CmlI的生物合成途径必须至少涉及三个步骤。在此,利用动力学技术,借助中间体P在无底物时的显著稳定性(4℃下衰变半衰期t = 3小时)以及双铁簇的可见发色团,来表征每个步骤的速率和/或解离常数。研究发现,二价铁CmlI(CmlI)可以与NH-CAM和O以任意顺序反应,形成P-NH-CAM中间体。P-NH-CAM经历快速的氧转移,形成与芳基羟胺[NH(OH)-CAM]途径中间体的三价铁CmlI(CmlI)复合物。CmlI-NH(OH)-CAM经历快速的内部氧化还原反应,形成CmlI-亚硝基-CAM(NO-CAM)复合物。O的结合导致形成P-NO-CAM,通过酶介导的氧原子转移转化为CmlI-CAM。动力学分析表明,随着反应的进行,途径中间体几乎没有解离。从溶液中添加途径中间体引发的反应比中间体作为催化过程的一部分在活性位点生成的反应要慢得多。因此,CmlI能够在一个活性位点完成整个六电子氧化反应,从而在避免偶然化学反应的同时保持效率和特异性。

相似文献

引用本文的文献

3
Biocatalytic Strategies for Nitration Reactions.硝化反应的生物催化策略
JACS Au. 2024 Dec 16;5(1):28-41. doi: 10.1021/jacsau.4c00994. eCollection 2025 Jan 27.

本文引用的文献

2
In-crystal reaction cycle of a toluene-bound diiron hydroxylase.甲苯结合双铁羟化酶的晶体反应循环。
Nature. 2017 Apr 13;544(7649):191-195. doi: 10.1038/nature21681. Epub 2017 Mar 27.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验