Suppr超能文献

非血红素 N-加氧酶 CmlI 中两性双氧桥基中间物的空前 (μ-1,1-过氧) 双铁结构。

Unprecedented (μ-1,1-Peroxo)diferric Structure for the Ambiphilic Orange Peroxo Intermediate of the Nonheme N-Oxygenase CmlI.

机构信息

Department of Chemistry, ‡Center for Metals in Biocatalysis, and §Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota , Minneapolis, Minnesota 55455, United States.

出版信息

J Am Chem Soc. 2017 Aug 2;139(30):10472-10485. doi: 10.1021/jacs.7b05389. Epub 2017 Jul 19.

Abstract

The final step in the biosynthesis of the antibiotic chloramphenicol is the oxidation of an aryl-amine substrate to an aryl-nitro product catalyzed by the N-oxygenase CmlI in three two-electron steps. The CmlI active site contains a diiron cluster ligated by three histidine and four glutamate residues and activates dioxygen to perform its role in the biosynthetic pathway. It was previously shown that the active oxidant used by CmlI to facilitate this chemistry is a peroxo-diferric intermediate (CmlI). Spectroscopic characterization demonstrated that the peroxo binding geometry of CmlI is not consistent with the μ-1,2 mode commonly observed in nonheme diiron systems. Its geometry was tentatively assigned as μ-η:η based on comparison with resonance Raman (rR) features of mixed-metal model complexes in the absence of appropriate diiron models. Here, X-ray absorption spectroscopy (XAS) and rR studies have been used to establish a refined structure for the diferric cluster of CmlI. The rR experiments carried out with isotopically labeled water identified the symmetric and asymmetric vibrations of an Fe-O-Fe unit in the active site at 485 and 780 cm, respectively, which was confirmed by the 1.83 Å Fe-O bond observed by XAS. In addition, a unique Fe···O scatterer at 2.82 Å observed from XAS analysis is assigned as arising from the distal O atom of a μ-1,1-peroxo ligand that is bound symmetrically between the irons. The (μ-oxo)(μ-1,1-peroxo)diferric core structure associated with CmlI is unprecedented among diiron cluster-containing enzymes and corresponding biomimetic complexes. Importantly, it allows the peroxo-diferric intermediate to be ambiphilic, acting as an electrophilic oxidant in the initial N-hydroxylation of an arylamine and then becoming a nucleophilic oxidant in the final oxidation of an aryl-nitroso intermediate to the aryl-nitro product.

摘要

抗生素氯霉素生物合成的最后一步是由 CmlI N-加氧酶催化的芳基-胺底物的氧化,生成芳基-硝基产物,该过程分三个两电子步骤进行。CmlI 的活性位点含有一个二铁簇,由三个组氨酸和四个谷氨酸残基连接,并激活分子氧以在生物合成途径中发挥作用。先前的研究表明,CmlI 用于促进这种化学转化的活性氧化剂是过氧-双铁中间物(CmlI)。光谱表征表明,CmlI 中过氧的结合几何形状与非血红素双铁系统中常见的 μ-1,2 模式不一致。根据与缺乏合适双铁模型的混合金属模型配合物的共振拉曼(rR)特征的比较,其几何形状被暂时指定为 μ-η:η。在此,使用 X 射线吸收光谱(XAS)和 rR 研究来建立 CmlI 双铁簇的精细结构。用同位素标记水进行的 rR 实验确定了活性位点中 Fe-O-Fe 单元的对称和不对称振动,分别在 485 和 780 cm 处,这通过 XAS 观察到的 1.83 Å Fe-O 键得到证实。此外,XAS 分析中观察到的独特的 Fe···O 散射体为 2.82 Å,被分配为来自 μ-1,1-过氧配体的远端 O 原子,该配体在铁之间对称结合。与 CmlI 相关的(μ-氧)(μ-1,1-过氧)双铁核心结构在含双铁簇的酶和相应的仿生复合物中是前所未有的。重要的是,它使过氧-双铁中间物具有两性,在芳基胺的初始 N-羟化作用中充当亲电氧化剂,然后在芳基-亚硝基中间物的最终氧化作用中充当亲核氧化剂,生成芳基-硝基产物。

相似文献

1
Unprecedented (μ-1,1-Peroxo)diferric Structure for the Ambiphilic Orange Peroxo Intermediate of the Nonheme N-Oxygenase CmlI.
J Am Chem Soc. 2017 Aug 2;139(30):10472-10485. doi: 10.1021/jacs.7b05389. Epub 2017 Jul 19.
2
An unusual peroxo intermediate of the arylamine oxygenase of the chloramphenicol biosynthetic pathway.
J Am Chem Soc. 2015 Feb 4;137(4):1608-17. doi: 10.1021/ja511649n. Epub 2015 Jan 21.
3
CmlI N-Oxygenase Catalyzes the Final Three Steps in Chloramphenicol Biosynthesis without Dissociation of Intermediates.
Biochemistry. 2017 Sep 19;56(37):4940-4950. doi: 10.1021/acs.biochem.7b00695. Epub 2017 Sep 6.
4
Crystal structure of CmlI, the arylamine oxygenase from the chloramphenicol biosynthetic pathway.
J Biol Inorg Chem. 2016 Sep;21(5-6):589-603. doi: 10.1007/s00775-016-1363-x. Epub 2016 May 26.
5
Convergent Theoretical Prediction of Reactive Oxidant Structures in Diiron Arylamine Oxygenases AurF and CmlI: Peroxo or Hydroperoxo?
J Am Chem Soc. 2017 Sep 20;139(37):13038-13046. doi: 10.1021/jacs.7b06343. Epub 2017 Sep 8.
8
Mechanism for Six-Electron Aryl-N-Oxygenation by the Non-Heme Diiron Enzyme CmlI.
J Am Chem Soc. 2016 Jun 15;138(23):7411-21. doi: 10.1021/jacs.6b03341. Epub 2016 Jun 3.
9
High-resolution iron X-ray absorption spectroscopic and computational studies of non-heme diiron peroxo intermediates.
J Inorg Biochem. 2020 Feb;203:110877. doi: 10.1016/j.jinorgbio.2019.110877. Epub 2019 Oct 22.
10
Diiron monooxygenases in natural product biosynthesis.
Nat Prod Rep. 2018 Jul 18;35(7):646-659. doi: 10.1039/C7NP00061H.

引用本文的文献

1
Nature of the Reactive Biferric Peroxy Intermediate P' in the Arylamine Oxygenases and Related Binuclear Fe Enzymes.
J Am Chem Soc. 2025 Apr 9;147(14):11707-11725. doi: 10.1021/jacs.4c11712. Epub 2025 Apr 1.
2
Heme Oxygenase-Like Metalloenzymes.
Annu Rev Biochem. 2025 Jun;94(1):59-88. doi: 10.1146/annurev-biochem-030122-043608. Epub 2025 Mar 27.
3
Reconstitution of the Final Steps in the Biosynthesis of Valanimycin Reveals the Origin of Its Characteristic Azoxy Moiety.
Angew Chem Int Ed Engl. 2024 Jan 2;63(1):e202315844. doi: 10.1002/anie.202315844. Epub 2023 Nov 28.
4
Resolving the Mechanism for HO Decomposition over Zr(IV)-Substituted Lindqvist Tungstate: Evidence of Singlet Oxygen Intermediacy.
ACS Catal. 2023 Jul 24;13(15):10324-10339. doi: 10.1021/acscatal.3c02416. eCollection 2023 Aug 4.
5
Heterolytic O-O Bond Cleavage Upon Single Electron Transfer to a Nonheme Fe(III)-OOH Complex.
Chemistry. 2022 Sep 22;28(53):e202201600. doi: 10.1002/chem.202201600. Epub 2022 Aug 3.
7
Generation of a μ-1,2-hydroperoxo FeFe and a μ-1,2-peroxo FeFe Complex.
Nat Commun. 2022 Mar 16;13(1):1376. doi: 10.1038/s41467-022-28894-5.
8
Iron-Containing Ureases.
Coord Chem Rev. 2021 Dec 1;448. doi: 10.1016/j.ccr.2021.214190. Epub 2021 Sep 9.
9
BesC Initiates C-C Cleavage through a Substrate-Triggered and Reactive Diferric-Peroxo Intermediate.
J Am Chem Soc. 2021 Dec 22;143(50):21416-21424. doi: 10.1021/jacs.1c11109. Epub 2021 Dec 13.
10
Ligand-Constraint-Induced Peroxide Activation for Electrophilic Reactivity.
Angew Chem Int Ed Engl. 2021 Jun 25;60(27):14954-14959. doi: 10.1002/anie.202100438. Epub 2021 May 28.

本文引用的文献

1
Peroxide Activation for Electrophilic Reactivity by the Binuclear Non-heme Iron Enzyme AurF.
J Am Chem Soc. 2017 May 24;139(20):7062-7070. doi: 10.1021/jacs.7b02997. Epub 2017 May 10.
2
In-crystal reaction cycle of a toluene-bound diiron hydroxylase.
Nature. 2017 Apr 13;544(7649):191-195. doi: 10.1038/nature21681. Epub 2017 Mar 27.
5
Crystal structure of CmlI, the arylamine oxygenase from the chloramphenicol biosynthetic pathway.
J Biol Inorg Chem. 2016 Sep;21(5-6):589-603. doi: 10.1007/s00775-016-1363-x. Epub 2016 May 26.
6
Mechanism for Six-Electron Aryl-N-Oxygenation by the Non-Heme Diiron Enzyme CmlI.
J Am Chem Soc. 2016 Jun 15;138(23):7411-21. doi: 10.1021/jacs.6b03341. Epub 2016 Jun 3.
7
Composition and Structure of the Inorganic Core of Relaxed Intermediate X(Y122F) of Escherichia coli Ribonucleotide Reductase.
J Am Chem Soc. 2015 Dec 16;137(49):15558-66. doi: 10.1021/jacs.5b10763. Epub 2015 Dec 4.
9
Structural Basis for Oxygen Activation at a Heterodinuclear Manganese/Iron Cofactor.
J Biol Chem. 2015 Oct 16;290(42):25254-72. doi: 10.1074/jbc.M115.675223. Epub 2015 Aug 31.
10
Proton-Induced, Reversible Interconversion of a μ-1,2-Peroxo and a μ-1,1-Hydroperoxo Dicopper(II) Complex.
J Am Chem Soc. 2015 Jul 1;137(25):8002-5. doi: 10.1021/jacs.5b04361. Epub 2015 Jun 19.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验