Suppr超能文献

具有随时间变化的中介变量和暴露因素的纵向中介分析及其在生存结局中的应用。

Longitudinal Mediation Analysis with Time-varying Mediators and Exposures, with Application to Survival Outcomes.

作者信息

Zheng Wenjing, van der Laan Mark

机构信息

Division of Biostatistics, University of California, Berkeley.

出版信息

J Causal Inference. 2017 Sep;5(2). doi: 10.1515/jci-2016-0006. Epub 2017 Jun 23.

Abstract

In this paper, we study the effect of a time-varying exposure mediated by a time-varying intermediate variable. We consider general longitudinal settings, including survival outcomes. At a given time point, the exposure and mediator of interest are influenced by past covariates, mediators and exposures, and affect future covariates, mediators and exposures. Right censoring, if present, occurs in response to past history. To address the challenges in mediation analysis that are unique to these settings, we propose a formulation in terms of random interventions based on conditional distributions for the mediator. This formulation, in particular, allows for well-defined natural direct and indirect effects in the survival setting, and natural decomposition of the standard total effect. Upon establishing identifiability and the corresponding statistical estimands, we derive the efficient influence curves and establish their robustness properties. Applying Targeted Maximum Likelihood Estimation, we use these efficient influence curves to construct multiply robust and efficient estimators. We also present an inverse probability weighted estimator and a nested non-targeted substitution estimator for these parameters.

摘要

在本文中,我们研究由时变中间变量介导的时变暴露的效应。我们考虑一般的纵向研究设置,包括生存结局。在给定的时间点,感兴趣的暴露和中间变量受到过去的协变量、中间变量和暴露的影响,并影响未来的协变量、中间变量和暴露。如果存在右删失,则其发生是对过去历史的响应。为应对这些设置中中介分析所特有的挑战,我们基于中间变量的条件分布,提出一种基于随机干预的公式化方法。特别是,这种公式化方法允许在生存设置中明确界定自然直接效应和间接效应,以及标准总效应的自然分解。在确立可识别性和相应的统计估计量后,我们推导有效影响曲线并确立其稳健性属性。应用靶向最大似然估计,我们使用这些有效影响曲线构建多重稳健且有效的估计量。我们还给出了这些参数的逆概率加权估计量和嵌套非靶向替代估计量。

相似文献

1
Longitudinal Mediation Analysis with Time-varying Mediators and Exposures, with Application to Survival Outcomes.
J Causal Inference. 2017 Sep;5(2). doi: 10.1515/jci-2016-0006. Epub 2017 Jun 23.
2
Mediation analysis with time varying exposures and mediators.
J R Stat Soc Series B Stat Methodol. 2017 Jun;79(3):917-938. doi: 10.1111/rssb.12194. Epub 2016 Jun 27.
3
Estimation of separable direct and indirect effects in a continuous-time illness-death model.
Lifetime Data Anal. 2024 Jan;30(1):143-180. doi: 10.1007/s10985-023-09601-y. Epub 2023 Jun 4.
4
Marginal Structural Models with Counterfactual Effect Modifiers.
Int J Biostat. 2018 Jun 8;14(1):/j/ijb.2018.14.issue-1/ijb-2018-0039/ijb-2018-0039.xml. doi: 10.1515/ijb-2018-0039.
5
Double Robust Efficient Estimators of Longitudinal Treatment Effects: Comparative Performance in Simulations and a Case Study.
Int J Biostat. 2019 Feb 26;15(2):/j/ijb.2019.15.issue-2/ijb-2017-0054/ijb-2017-0054.xml. doi: 10.1515/ijb-2017-0054.
8
Longitudinal Mediation Analysis Using Natural Effect Models.
Am J Epidemiol. 2020 Nov 2;189(11):1427-1435. doi: 10.1093/aje/kwaa092.
9
A Causal Mediation Model for Longitudinal Mediators and Survival Outcomes with an Application to Animal Behavior.
J Agric Biol Environ Stat. 2023 Jun;28(2):197-218. doi: 10.1007/s13253-022-00490-6. Epub 2022 Apr 5.
10
Targeted maximum likelihood estimation of natural direct effects.
Int J Biostat. 2012 Jan 6;8(1):/j/ijb.2012.8.issue-1/1557-4679.1361/1557-4679.1361.xml. doi: 10.2202/1557-4679.1361.

引用本文的文献

1
Causal mediation analysis: selection with asymptotically valid inference.
J R Stat Soc Series B Stat Methodol. 2024 Nov 28;87(3):678-700. doi: 10.1093/jrsssb/qkae109. eCollection 2025 Jul.
2
Robust evaluation of longitudinal surrogate markers with censored data.
J R Stat Soc Series B Stat Methodol. 2024 Dec 26;87(3):891-907. doi: 10.1093/jrsssb/qkae119. eCollection 2025 Jul.
3
CAUSAL MEDIATION ANALYSIS FOR SPARSE AND IRREGULAR LONGITUDINAL DATA.
Ann Appl Stat. 2021 Jun;15(2):747-767. doi: 10.1214/20-aoas1427. Epub 2021 Jul 12.
4
Longitudinal mediation analysis with multilevel and latent growth models: a separable effects causal approach.
BMC Med Res Methodol. 2024 Oct 25;24(1):248. doi: 10.1186/s12874-024-02358-4.
5
Mediation analysis in longitudinal study with high-dimensional methylation mediators.
Brief Bioinform. 2024 Sep 23;25(6). doi: 10.1093/bib/bbae496.
6
Leveraging Experience Sampling/Ecological Momentary Assessment for Sociological Investigations of Everyday Life.
Annu Rev Sociol. 2024 Aug;50:41-59. doi: 10.1146/annurev-soc-091523-013249. Epub 2024 Apr 17.
7
Clarifying causal mediation analysis: Effect identification via three assumptions and five potential outcomes.
J Causal Inference. 2022 Sep 22;10(1):246-279. doi: 10.1515/jci-2021-0049. eCollection 2022 Jan.
9
A Causal Mediation Model for Longitudinal Mediators and Survival Outcomes with an Application to Animal Behavior.
J Agric Biol Environ Stat. 2023 Jun;28(2):197-218. doi: 10.1007/s13253-022-00490-6. Epub 2022 Apr 5.
10
Estimation of separable direct and indirect effects in a continuous-time illness-death model.
Lifetime Data Anal. 2024 Jan;30(1):143-180. doi: 10.1007/s10985-023-09601-y. Epub 2023 Jun 4.

本文引用的文献

1
Mediation analysis with time varying exposures and mediators.
J R Stat Soc Series B Stat Methodol. 2017 Jun;79(3):917-938. doi: 10.1111/rssb.12194. Epub 2016 Jun 27.
3
4
Targeted estimation of nuisance parameters to obtain valid statistical inference.
Int J Biostat. 2014;10(1):29-57. doi: 10.1515/ijb-2012-0038.
5
Effect decomposition in the presence of an exposure-induced mediator-outcome confounder.
Epidemiology. 2014 Mar;25(2):300-6. doi: 10.1097/EDE.0000000000000034.
6
Identification and efficient estimation of the natural direct effect among the untreated.
Biometrics. 2013 Jun;69(2):310-7. doi: 10.1111/biom.12022. Epub 2013 Apr 23.
8
Targeted maximum likelihood estimation of natural direct effects.
Int J Biostat. 2012 Jan 6;8(1):/j/ijb.2012.8.issue-1/1557-4679.1361/1557-4679.1361.xml. doi: 10.2202/1557-4679.1361.
9
Direct effect models.
Int J Biostat. 2008;4(1):Article 23. doi: 10.2202/1557-4679.1064.
10
Targeted maximum likelihood based causal inference: Part I.
Int J Biostat. 2010;6(2):Article 2. doi: 10.2202/1557-4679.1211.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验