Suppr超能文献

基于脑电图信号的AdaBoost分类器自动检测驾驶员疲劳

Automated Detection of Driver Fatigue Based on AdaBoost Classifier with EEG Signals.

作者信息

Hu Jianfeng

机构信息

The Center of Collaboration and Innovation, Jiangxi University of TechnologyNanchang, China.

出版信息

Front Comput Neurosci. 2017 Aug 3;11:72. doi: 10.3389/fncom.2017.00072. eCollection 2017.

Abstract

Driving fatigue has become one of the important causes of road accidents, there are many researches to analyze driver fatigue. EEG is becoming increasingly useful in the measuring fatigue state. Manual interpretation of EEG signals is impossible, so an effective method for automatic detection of EEG signals is crucial needed. In order to evaluate the complex, unstable, and non-linear characteristics of EEG signals, four feature sets were computed from EEG signals, in which fuzzy entropy (FE), sample entropy (SE), approximate Entropy (AE), spectral entropy (PE), and combined entropies (FE + SE + AE + PE) were included. All these feature sets were used as the input vectors of AdaBoost classifier, a boosting method which is fast and highly accurate. To assess our method, several experiments including parameter setting and classifier comparison were conducted on 28 subjects. For comparison, Decision Trees (DT), Support Vector Machine (SVM) and Naive Bayes (NB) classifiers are used. The proposed method (combination of FE and AdaBoost) yields superior performance than other schemes. Using FE feature extractor, AdaBoost achieves improved area (AUC) under the receiver operating curve of 0.994, error rate (ERR) of 0.024, Precision of 0.969, Recall of 0.984, F1 score of 0.976, and Matthews correlation coefficient (MCC) of 0.952, compared to SVM (ERR at 0.035, Precision of 0.957, Recall of 0.974, F1 score of 0.966, and MCC of 0.930 with AUC of 0.990), DT (ERR at 0.142, Precision of 0.857, Recall of 0.859, F1 score of 0.966, and MCC of 0.716 with AUC of 0.916) and NB (ERR at 0.405, Precision of 0.646, Recall of 0.434, F1 score of 0.519, and MCC of 0.203 with AUC of 0.606). It shows that the FE feature set and combined feature set outperform other feature sets. AdaBoost seems to have better robustness against changes of ratio of test samples for all samples and number of subjects, which might therefore aid in the real-time detection of driver fatigue through the classification of EEG signals. By using combination of FE features and AdaBoost classifier to detect EEG-based driver fatigue, this paper ensured confidence in exploring the inherent physiological mechanisms and wearable application.

摘要

驾驶疲劳已成为道路交通事故的重要原因之一,有许多研究致力于分析驾驶员疲劳。脑电图(EEG)在测量疲劳状态方面正变得越来越有用。人工解读EEG信号是不可能的,因此迫切需要一种有效的EEG信号自动检测方法。为了评估EEG信号的复杂、不稳定和非线性特征,从EEG信号中计算了四个特征集,其中包括模糊熵(FE)、样本熵(SE)、近似熵(AE)、谱熵(PE)以及组合熵(FE + SE + AE + PE)。所有这些特征集都被用作AdaBoost分类器的输入向量,AdaBoost是一种快速且高度准确的增强方法。为了评估我们的方法,对28名受试者进行了包括参数设置和分类器比较在内的多项实验。作为比较,使用了决策树(DT)、支持向量机(SVM)和朴素贝叶斯(NB)分类器。所提出的方法(FE和AdaBoost的组合)比其他方案具有更优的性能。与SVM(错误率(ERR)为0.035,精确率为0.957,召回率为0.974,F1分数为0.966,马修斯相关系数(MCC)为0.930,曲线下面积(AUC)为0.990)、DT(ERR为0.142,精确率为0.857,召回率为0.859,F1分数为0.966,MCC为0.716,AUC为0.916)和NB(ERR为0.405,精确率为0.646,召回率为0.434,F1分数为0.519,MCC为0.203,AUC为0.606)相比,使用FE特征提取器时,AdaBoost在接收者操作特征曲线下实现了0.994的改进面积(AUC)、0.024的错误率(ERR)、0.969的精确率、0.984的召回率、0.976的F1分数以及0.952的马修斯相关系数(MCC)。这表明FE特征集和组合特征集优于其他特征集。对于所有样本的测试样本比例和受试者数量的变化,AdaBoost似乎具有更好的鲁棒性,因此可能有助于通过EEG信号分类实现驾驶员疲劳的实时检测。通过使用FE特征和AdaBoost分类器的组合来检测基于EEG的驾驶员疲劳,本文为探索内在生理机制和可穿戴应用提供了信心。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6b5b/5540979/7011680cae8b/fncom-11-00072-g0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验