McQuarters Ashley B, Kampf Jeff W, Alp E Ercan, Hu Michael, Zhao Jiyong, Lehnert Nicolai
Department of Chemistry and Department of Biophysics, University of Michigan , Ann Arbor, Michigan 48109, United States.
Advanced Photon Source, Argonne National Laboratory , Argonne, Illinois 60439, United States.
Inorg Chem. 2017 Sep 5;56(17):10513-10528. doi: 10.1021/acs.inorgchem.7b01493. Epub 2017 Aug 21.
We have determined a convenient method for the bulk synthesis of high-purity ferric heme-nitrosyl complexes ({FeNO} in the Enemark-Feltham notation); this method is based on the chemical or electrochemical oxidation of corresponding {FeNO} precursors. We used this method to obtain the five- and six-coordinate complexes [Fe(TPP)(NO)] (TPP = tetraphenylporphyrin dianion) and [Fe(TPP)(NO)(MI)] (MI = 1-methylimidazole) and demonstrate that these complexes are stable in solution in the absence of excess NO gas. This is in stark contrast to the often-cited instability of such {FeNO} model complexes in the literature, which is likely due to the common presence of halide impurities (although other impurities could certainly also play a role). This is avoided in our approach for the synthesis of {FeNO} complexes via oxidation of pure {FeNO} precursors. On the basis of these results, {FeNO} complexes in proteins do not show an increased stability toward NO loss compared to model complexes. We also prepared the halide-coordinated complexes [Fe(TPP)(NO)(X)] (X = Cl, Br), which correspond to the elusive, key reactive intermediate in the so-called autoreduction reaction, which is frequently used to prepare {FeNO} complexes from ferric precursors. All of the complexes were characterized using X-ray crystallography, UV-vis, IR, and nuclear resonance vibrational spectroscopy (NRVS). On the basis of the vibrational data, further insight into the electronic structure of these {FeNO} complexes, in particular with respect to the role of the axial ligand trans to NO, is obtained.
我们已经确定了一种简便的方法来大量合成高纯度的铁血红素 - 亚硝酰配合物(以埃内马克 - 费尔瑟姆符号表示为{FeNO});该方法基于相应{FeNO}前体的化学或电化学氧化。我们使用此方法获得了五配位和六配位的配合物[Fe(TPP)(NO)](TPP = 四苯基卟啉二价阴离子)和[Fe(TPP)(NO)(MI)](MI = 1 - 甲基咪唑),并证明这些配合物在没有过量NO气体的溶液中是稳定的。这与文献中经常提到的此类{FeNO}模型配合物的不稳定性形成鲜明对比,这种不稳定性可能是由于卤化物杂质的普遍存在(尽管其他杂质肯定也可能起作用)。在我们通过氧化纯{FeNO}前体来合成{FeNO}配合物的方法中避免了这种情况。基于这些结果,与模型配合物相比,蛋白质中的{FeNO}配合物在NO损失方面并未表现出更高的稳定性。我们还制备了卤化物配位的配合物[Fe(TPP)(NO)(X)](X = Cl,Br),它们对应于所谓自还原反应中难以捉摸的关键反应中间体,该反应常用于从三价铁前体制备{FeNO}配合物。所有配合物都通过X射线晶体学、紫外可见光谱、红外光谱和核共振振动光谱(NRVS)进行了表征。基于振动数据,对这些{FeNO}配合物的电子结构有了进一步的了解,特别是关于与NO相对的轴向配体的作用。