Suppr超能文献

[Fe(TPP)(MI)(NO)]的各向同性单晶核共振振动光谱:NO 反式效应的定量评估。

Oriented single-crystal nuclear resonance vibrational spectroscopy of [Fe(TPP)(MI)(NO)]: quantitative assessment of the trans effect of NO.

机构信息

Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, USA.

出版信息

Inorg Chem. 2010 Aug 2;49(15):7197-215. doi: 10.1021/ic1010677.

Abstract

This paper presents oriented single-crystal Nuclear Resonance Vibrational Spectroscopy (NRVS) data for the six-coordinate (6C) ferrous heme-nitrosyl model complex [(57)Fe(TPP)(MI)(NO)] (1; TPP(2-) = tetraphenylporphyrin dianion; MI = 1-methylimidazole). The availability of these data enables for the first time the detailed simulation of the complete NRVS data, including the porphyrin-based vibrations, of a 6C ferrous heme-nitrosyl, using our quantum chemistry centered normal coordinate analysis (QCC-NCA). Importantly, the Fe-NO stretch is split by interaction with a porphyrin-based vibration into two features, observed at 437 and 472 cm(-1). The 437 cm(-1) feature is strongly out-of-plane (oop) polarized and shows a (15)N(18)O isotope shift of 8 cm(-1) and is therefore assigned to nu(Fe-NO). The admixture of Fe-N-O bending character is small. Main contributions to the Fe-N-O bend are observed in the 520-580 cm(-1) region, distributed over a number of in-plane (ip) polarized porphyrin-based vibrations. The main component, assigned to delta(ip)(Fe-N-O), is identified with the feature at 563 cm(-1). The Fe-N-O bend also shows strong mixing with the Fe-NO stretching internal coordinate, as evidenced by the oop NRVS intensity in the 520-580 cm(-1) region. Very accurate normal mode descriptions of nu(Fe-NO) and delta(ip)(Fe-N-O) have been obtained in this study. These results contradict previous interpretations of the vibrational spectra of 6C ferrous heme-nitrosyls where the higher energy feature at approximately 550 cm(-1) had usually been associated with nu(Fe-NO). Furthermore, these results provide key insight into NO binding to ferrous heme active sites in globins and other heme proteins, in particular with respect to (a) the effect of hydrogen bonding to the coordinated NO and (b) changes in heme dynamics upon NO coordination. [Fe(TPP)(MI)(NO)] constitutes an excellent model system for ferrous NO adducts of myoglobin (Mb) mutants where the distal histidine (His64) has been removed. Comparison to the reported vibrational data for wild-type (wt) Mb-NO then shows that the effect of H bonding to the coordinated NO is weak and mostly leads to a polarization of the pi/pi* orbitals of bound NO. In addition, the observation that delta(ip)(Fe-N-O) does not correlate well with nu(N-O) can be traced back to the very mixed nature of this mode. The Fe-N(imidazole) stretching frequency is observed at 149 cm(-1) in [Fe(TPP)(MI)(NO)], and spectral changes upon NO binding to five-coordinate ferrous heme active sites are discussed. The obtained high-quality force constants for the Fe-NO and N-O bonds of 2.57 and 11.55 mdyn/A can further be compared to those of corresponding 5C species, which allows for a quantitative analysis of the sigma trans interaction between the proximal imidazole (His) ligand and NO. This is key for the activation of the NO sensor soluble guanylate cyclase. Finally, DFT methods are calibrated against the experimentally determined vibrational properties of the Fe-N-O subunit in 1. DFT is in fact incapable of reproducing the vibrational energies and normal mode descriptions of the Fe-N-O unit well, and thus, DFT-based predictions of changes in vibrational properties upon heme modification or other perturbations of these 6C complexes have to be treated with caution.

摘要

本文介绍了六配位(6C)亚铁血红素-亚硝酰模型配合物[(57)Fe(TPP)(MI)(NO)](1;TPP(2-) = 四苯基卟啉二阴离子;MI = 1-甲基咪唑)的取向单晶核磁共振振动光谱(NRVS)数据。这些数据的可用性首次使得我们能够使用量子化学为中心的正则振动分析(QCC-NCA)对 6C 亚铁血红素-亚硝酰的完整 NRVS 数据(包括基于卟啉的振动)进行详细模拟。重要的是,Fe-NO 伸缩通过与基于卟啉的振动相互作用分裂为两个特征,在 437 和 472 cm(-1) 处观察到。437 cm(-1) 特征强烈的面外(oop)极化,并且表现出 15N(18)O 同位素位移 8 cm(-1),因此被分配给 nu(Fe-NO)。Fe-N-O 弯曲特征的混合很小。在 520-580 cm(-1) 区域中观察到 Fe-N-O 弯曲的主要贡献,分布在许多面内(ip)极化的卟啉基振动上。主要成分,分配给 delta(ip)(Fe-N-O),与 563 cm(-1) 处的特征相对应。Fe-N-O 弯曲也与 Fe-NO 伸缩内部坐标强烈混合,这可以通过在 520-580 cm(-1) 区域中的 oop NRVS 强度来证明。在这项研究中,获得了 nu(Fe-NO)和 delta(ip)(Fe-N-O)的非常准确的正则振动描述。这些结果与以前对 6C 亚铁血红素-亚硝酰振动光谱的解释相矛盾,其中大约 550 cm(-1)的较高能量特征通常与 nu(Fe-NO)有关。此外,这些结果为 NO 结合球蛋白和其他血红素蛋白中的亚铁血红素活性位点提供了关键的见解,特别是关于(a)与配位的 NO 氢键的影响和(b)NO 配位时血红素动力学的变化。[Fe(TPP)(MI)(NO)] 是肌红蛋白(Mb)突变体中亚铁 NO 加合物的极好模型体系,其中远端组氨酸(His64)已被去除。与野生型(wt)Mb-NO 的报道振动数据进行比较,然后表明与配位的 NO 氢键的影响较弱,并且主要导致结合的 NO 的 pi/pi*轨道的极化。此外,观察到 delta(ip)(Fe-N-O)与 nu(N-O)不相关可以追溯到这种模式的非常混合性质。在[Fe(TPP)(MI)(NO)]中,Fe-N(咪唑)伸缩频率观察到在 149 cm(-1),并且讨论了 NO 结合到五配位亚铁血红素活性位点时的光谱变化。获得的 2.57 和 11.55 mdyn/A 的 Fe-NO 和 N-O 键的高质量力常数可以进一步与相应的 5C 物种进行比较,这允许对近端咪唑(His)配体和 NO 之间的 sigma 反相互作用进行定量分析。这对于 NO 传感器可溶性鸟苷酸环化酶的激活至关重要。最后,用实验确定的 1 中 Fe-N-O 亚基的振动特性对 DFT 方法进行校准。实际上,DFT 方法不能很好地重现 Fe-N-O 单元的振动能量和正则振动描述,因此,必须谨慎对待基于 DFT 的血红素修饰或这些 6C 配合物的其他扰动时振动性质变化的预测。

相似文献

3
Axial ligand effects on vibrational dynamics of iron in heme carbonyl studied by nuclear resonance vibrational spectroscopy.
J Phys Chem B. 2012 Nov 29;116(47):13831-8. doi: 10.1021/jp304398g. Epub 2012 Nov 14.
5
Quantitative vibrational dynamics of iron in nitrosyl porphyrins.
J Am Chem Soc. 2004 Apr 7;126(13):4211-27. doi: 10.1021/ja038526h.
9
A structure-based analysis of the vibrational spectra of nitrosyl ligands in transition-metal coordination complexes and clusters.
Spectrochim Acta A Mol Biomol Spectrosc. 2011 Jan;78(1):7-28. doi: 10.1016/j.saa.2010.08.001. Epub 2010 Aug 17.

引用本文的文献

1
Nuclear Resonance Vibrational Spectroscopy: A Modern Tool to Pinpoint Site-Specific Cooperative Processes.
Crystals (Basel). 2021 Aug;11(8). doi: 10.3390/cryst11080909. Epub 2021 Aug 2.
2
Insights into the Observed -Bond Length Variations upon NO Binding to Ferric and Ferrous Porphyrins with Neutral Axial Ligands.
ACS Omega. 2021 Sep 15;6(38):24777-24787. doi: 10.1021/acsomega.1c03610. eCollection 2021 Sep 28.
3
SciPhon: a data analysis software for nuclear resonant inelastic X-ray scattering with applications to Fe, Kr, Sn, Eu and Dy.
J Synchrotron Radiat. 2018 Sep 1;25(Pt 5):1581-1599. doi: 10.1107/S1600577518009487. Epub 2018 Aug 21.
4
What Can Be Learned from Nuclear Resonance Vibrational Spectroscopy: Vibrational Dynamics and Hemes.
Chem Rev. 2017 Oct 11;117(19):12532-12563. doi: 10.1021/acs.chemrev.7b00295. Epub 2017 Sep 18.
5
Engineering proximal distal heme-NO coordination dinitrosyl dynamics: implications for NO sensor design.
Chem Sci. 2017 Mar 1;8(3):1986-1994. doi: 10.1039/c6sc04190f. Epub 2016 Nov 16.
6
3D Motions of Iron in Six-Coordinate {FeNO}(7) Hemes by Nuclear Resonance Vibration Spectroscopy.
Chemistry. 2016 Apr 25;22(18):6323-6332. doi: 10.1002/chem.201505155. Epub 2016 Mar 21.
8
Effects of protein structure on iron-polypeptide vibrational dynamic coupling in cytochrome c.
Biochemistry. 2015 Feb 3;54(4):1064-76. doi: 10.1021/bi501430z. Epub 2015 Jan 16.
9
Comprehensive Fe-ligand vibration identification in {FeNO}6 hemes.
J Am Chem Soc. 2014 Dec 31;136(52):18100-10. doi: 10.1021/ja5105766. Epub 2014 Dec 18.
10
The diagnostic vibrational signature of pentacoordination in heme carbonyls.
J Am Chem Soc. 2014 Jul 16;136(28):9818-21. doi: 10.1021/ja503191z. Epub 2014 Jul 7.

本文引用的文献

2
Probing vibrational anisotropy with nuclear resonance vibrational spectroscopy.
Angew Chem Int Ed Engl. 2010 Jun 14;49(26):4400-4. doi: 10.1002/anie.201000928.
5
Mapping NO movements in crystalline [Fe(Porph)(NO)(1-MeIm)].
J Am Chem Soc. 2009 Feb 18;131(6):2131-40. doi: 10.1021/ja8055613.
9
Ambidentate H-bonding by heme-bound NO: structural and spectral effects of -O versus -N H-bonding.
J Biol Inorg Chem. 2008 May;13(4):613-21. doi: 10.1007/s00775-008-0349-8.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验