Suppr超能文献

基于聚(3,4-亚乙基二氧噻吩)的纳米纤维垫作为一种有机生物电子平台,用于编程循环肿瘤细胞的多次捕获/释放。

Poly(3,4-ethylenedioxythiophene)-Based Nanofiber Mats as an Organic Bioelectronic Platform for Programming Multiple Capture/Release Cycles of Circulating Tumor Cells.

机构信息

Department of Materials Engineering, Ming Chi University of Technology , Taishan, New Taipei City 24301, Taiwan.

Department of Chemical and Materials Engineering, Chang Gung University , Guishan, Taoyuan 33302, Taiwan.

出版信息

ACS Appl Mater Interfaces. 2017 Sep 13;9(36):30329-30342. doi: 10.1021/acsami.7b07042. Epub 2017 Sep 1.

Abstract

In this investigation, we employed a novel one-step electrospinning process to fabricate poly(ethylene oxide) (PEO)/poly(3,4-ethylenedioxythiophene):polystyrenesulfonate (PEDOT:PSS) core/shell nanofiber structures with improved water resistance and good electrochemical properties and characterized them using scanning electron microscopy, transmission electron microscopy, and time-of-flight secondary ion mass spectrometry imaging. We then integrated a biotinylated poly-(l-lysine-graft-ethylene glycol) (PLL-g-PEG-biotin) coating with three-dimensional (3D) PEDOT-based nanofiber devices for dynamic control over the capture/release performance of rare circulating tumor cells (CTCs) on-chip. The detailed capture/release behavior of the circulating tumor cells was studied using an organic bioelectronic platform comprising PEO/PEDOT:PSS nanofiber mats with 3 wt % (3-glycidyloxypropyl)trimethoxysilane as an additive. We have demonstrated that these nanofiber mats deposited on five-patterned indium tin oxide finger electrodes are excellent candidates for use as functional bioelectronic interfaces for the isolation, detection, sequential collection, and enrichment of rare CTCs through electrical activation of each single electrode. This combination behaved as an ideal model system displaying a high cell-capture yield for antibody-positive cells while resisting the adhesion of antibody-negative cells. Taking advantage of the electrochemical doping/dedoping characteristics of PEDOT:PSS materials, the captured rare cells could be electrically triggered release through the desorption phenomena of PLL-g-PEG-biotin on device surface. More than 90% of the targeted cancer cells were captured on the 3D PEDOT-based nanofiber microfluidic device; over 87% of captured cancer cells were subsequently released for collection; approximately 80% of spiked cancer cells could be collected in a 96-well plate. Therefore, this 3D PEDOT-based nanofiber approach appears to be an economical route for the large-scale preparation of systems for enhancing the downstream characterization of rare CTCs.

摘要

在这项研究中,我们采用了一种新颖的一步静电纺丝工艺,制备了具有良好的耐水性和电化学性能的聚(氧化乙烯)(PEO)/聚(3,4-乙撑二氧噻吩):聚苯乙烯磺酸盐(PEDOT:PSS)核/壳纳米纤维结构,并通过扫描电子显微镜、透射电子显微镜和飞行时间二次离子质谱成像对其进行了表征。然后,我们将带有生物素化聚(L-赖氨酸-接枝-聚乙二醇)(PLL-g-PEG-biotin)涂层的三维(3D)基于 PEDOT 的纳米纤维器件集成在一起,用于动态控制芯片上稀有循环肿瘤细胞(CTC)的捕获/释放性能。使用包含 PEO/PEDOT:PSS 纳米纤维垫和 3 wt %(3-缩水甘油氧基丙基)三甲氧基硅烷作为添加剂的有机生物电子平台研究了循环肿瘤细胞的详细捕获/释放行为。我们已经证明,沉积在五个图案化铟锡氧化物指状电极上的这些纳米纤维垫是作为功能生物电子界面的优秀候选材料,可用于通过对每个单个电极进行电激活来分离、检测、顺序收集和富集稀有 CTC。这种组合表现出一种理想的模型系统,对于抗体阳性细胞具有高的细胞捕获率,同时抵抗抗体阴性细胞的粘附。利用 PEDOT:PSS 材料的电化学掺杂/脱掺杂特性,通过在器件表面上的 PLL-g-PEG-biotin 的解吸现象,可以电触发捕获的稀有细胞释放。超过 90%的靶癌细胞被捕获在 3D 基于 PEDOT 的纳米纤维微流控装置上;超过 87%的捕获癌细胞随后被释放以供收集;大约 80%的掺入癌细胞可以在 96 孔板中收集。因此,这种基于 3D PEDOT 的纳米纤维方法似乎是一种经济的途径,可以大规模制备增强稀有 CTC 下游表征的系统。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验