Lu Chu-Hua, Hsiao Yu-Sheng, Kuo Chiung-Wen, Chen Peilin
Research Center for Applied Sciences, Academia Sinica, Taipei 11529, Taiwan.
Biochim Biophys Acta. 2013 Sep;1830(9):4321-8. doi: 10.1016/j.bbagen.2012.08.028. Epub 2012 Sep 12.
Organic bioelectronic devices consisting of alternating poly(3,4-ethylenedioxythiophene) (PEDOT) and reduced graphite oxide (rGO) striped microelectrode arrays were fabricated by lithography technology. It has been demonstrated that the organic bioelectronic devices can be used to spatially and temporally manipulate the location and proliferation of the neuron-like pheochromocytoma cells (PC-12 cells).
By coating an electrically labile contact repulsion layer of poly(l-lysine-graft-ethylene glycol) (PLL-g-PEG) on the PEDOT electrode, the location and polarity of the PC-12 cells were confined to the rGO electrodes.
The outgrowth of spatially confined bipolar neurites was found to align along the direction of the 20μm wide electrode. The location of the PC-12 cells can also be manipulated temporally by applying electrical stimulation during the neurite differentiation of PC-12 cells, allowing the PC-12 cells to cross over the boundary between the PEDOT and the rGO regions and construct neurite networks in an unconfined manner where the contact repulsive coating of PLL-g-PEG was removed.
This adsorption and desorption of the PLL-g-PEG without and with electrical stimulation can be attributed to the tunable surface properties of the PEDOT microelectrodes, whose surface charge can switch from being negative to positive under electrical stimulation.
The electrically tunable organic bioelectronics reported here could potentially be applied to tissue engineering related to the development and regeneration of mammalian nervous systems. The spatial and temporal control in this device would also be used to study the synapse junctions of neuron-neuron contacts in both time and space domains. This article is part of a Special Issue entitled Organic Bioelectronics - Novel Applications in Biomedicine.
通过光刻技术制备了由交替的聚(3,4 - 乙撑二氧噻吩)(PEDOT)和还原氧化石墨烯(rGO)条纹微电极阵列组成的有机生物电子器件。已证明该有机生物电子器件可用于在空间和时间上操纵类神经元嗜铬细胞瘤细胞(PC - 12细胞)的位置和增殖。
通过在PEDOT电极上涂覆聚(L - 赖氨酸 - 接枝 - 乙二醇)(PLL - g - PEG)的电不稳定接触排斥层,将PC - 12细胞的位置和极性限制在rGO电极上。
发现空间受限的双极神经突的生长沿着20μm宽的电极方向排列。在PC - 12细胞神经突分化过程中,通过施加电刺激也可以在时间上操纵PC - 12细胞的位置,使PC - 12细胞越过PEDOT和rGO区域之间的边界,并在去除PLL - g - PEG接触排斥涂层的无限制区域构建神经突网络。
有无电刺激时PLL - g - PEG的这种吸附和解吸可归因于PEDOT微电极的可调表面性质,其表面电荷在电刺激下可从负变为正。
本文报道的电可调有机生物电子学可能潜在地应用于与哺乳动物神经系统发育和再生相关的组织工程。该器件中的空间和时间控制也将用于在时域和空域研究神经元 - 神经元接触的突触连接。本文是名为“有机生物电子学 - 生物医学中的新应用”的特刊的一部分。