1 McConnell Brain Imaging Centre, McGill University , Montreal, Canada .
2 Neuroimaging Center, University of Groningen , Groningen, The Netherlands .
Brain Connect. 2017 Oct;7(8):482-490. doi: 10.1089/brain.2016.0465.
Neuroimaging studies typically consider white matter as unchanging in different neural and metabolic states. However, a recent study demonstrated that white matter signal regression (WMSR) produced a similar loss of neurometabolic information to global (whole-brain) signal regression (GSR) in resting-state functional magnetic resonance imaging (R-fMRI) data. This was unexpected as the loss of information would normally be attributed to neural activity within gray matter correlating with the global R-fMRI signal. Indeed, WMSR has been suggested as an alternative to avoid such pitfalls in GSR. To address these concerns about tissue-specific regression in R-fMRI data analysis, we performed GSR, WMSR, and gray matter signal regression (GMSR) on R-fMRI data from the 1000 Functional Connectomes Project. We describe several regional and motion-related differences between different types of regressions. However, the overall effects of concern, particularly network-specific alteration of correlation coefficients, are present for all regressions. This suggests that tissue-specific regression is not an adequate strategy to counter pitfalls of GSR. Conversely, if GSR is desired, but the studied disease state excludes either gray matter or white matter from analysis (e.g., due to tissue atrophy), our results indicate that WMSR or GMSR may reproduce the gross effects of GSR.
神经影像学研究通常认为,在不同的神经和代谢状态下,白质是不变的。然而,最近的一项研究表明,在静息态功能磁共振成像(R-fMRI)数据中,白质信号回归(WMSR)产生的与全局(全脑)信号回归(GSR)相似的神经代谢信息丢失。这是出乎意料的,因为信息丢失通常归因于与全局 R-fMRI 信号相关的灰质内的神经活动。事实上,WMSR 已被提议作为一种替代方法,以避免 GSR 中的此类陷阱。为了解决 R-fMRI 数据分析中与组织特异性回归相关的这些问题,我们在来自 1000 个功能连接组项目的 R-fMRI 数据上进行了 GSR、WMSR 和灰质信号回归(GMSR)。我们描述了不同类型回归之间的几个区域和运动相关差异。然而,所有回归都存在人们关注的总体影响,特别是网络特定的相关系数改变。这表明组织特异性回归不是解决 GSR 陷阱的有效策略。相反,如果需要进行 GSR,但研究的疾病状态排除了灰质或白质的分析(例如,由于组织萎缩),则我们的结果表明 WMSR 或 GMSR 可能会再现 GSR 的总体效果。