Peter Brad G, Mungai Leah M, Messina Joseph P, Snapp Sieglinde S
Department of Geography, Environment, and Spatial Sciences, Michigan State University, East Lansing, MI, USA; Center for Global Change and Earth Observations, Michigan State University, East Lansing, MI, USA.
Department of Geography, Environment, and Spatial Sciences, Michigan State University, East Lansing, MI, USA; Center for Global Change and Earth Observations, Michigan State University, East Lansing, MI, USA.
Environ Res. 2017 Nov;159:283-290. doi: 10.1016/j.envres.2017.08.011. Epub 2017 Aug 18.
Modern plant breeding tends to focus on maximizing yield, with one of the most ubiquitous implementations being shorter-duration crop varieties. It is indisputable that these breeding efforts have resulted in greater yields in ideal circumstances; however, many farmed locations across Africa suffer from one or more conditions that limit the efficacy of modern short-duration hybrids. In view of global change and increased necessity for intensification, perennial grains and long-duration varieties offer a nature-based solution for improving farm productivity and smallholder livelihoods in suboptimal agricultural areas. Specific conditions where perennial grains should be considered include locations where biophysical and social constraints reduce agricultural system efficiency, and where conditions are optimal for crop growth. Using a time-series of remotely-sensed data, we locate the marginal agricultural lands of Africa, identifying suboptimal temperature and precipitation conditions for the dominant crop, i.e., maize, as well as optimal climate conditions for two perennial grains, pigeonpea and sorghum. We propose that perennial grains offer a lower impact, sustainable nature-based solution to this subset of climatic drivers of marginality. Using spatial analytic methods and satellite-derived climate information, we demonstrate the scalability of perennial pigeonpea and sorghum across Africa. As a nature-based solution, we argue that perennial grains offer smallholder farmers of marginal lands a sustainable solution for enhancing resilience and minimizing risk in confronting global change, while mitigating social and edaphic drivers of low and variable production.
现代植物育种往往侧重于实现产量最大化,其中最普遍的做法之一是培育生育期较短的作物品种。不可否认,这些育种工作在理想条件下带来了更高的产量;然而,非洲许多种植地区面临一种或多种限制现代短生育期杂交品种效能的条件。鉴于全球变化以及集约化需求的增加,多年生谷物和长生育期品种为提高次优农业地区的农场生产力和小农生计提供了一种基于自然的解决方案。应考虑种植多年生谷物的特定条件包括生物物理和社会限制降低农业系统效率的地区,以及作物生长条件最佳的地区。利用一系列遥感数据,我们确定了非洲的边际农业用地,确定了主要作物(即玉米)的次优温度和降水条件,以及两种多年生谷物(木豆和高粱)的最佳气候条件。我们认为,多年生谷物为这一边缘化气候驱动因素子集提供了一种影响较小、基于自然的可持续解决方案。利用空间分析方法和卫星衍生的气候信息,我们展示了多年生木豆和高粱在非洲各地的可扩展性。作为一种基于自然的解决方案,我们认为多年生谷物为边际土地上的小农提供了一种可持续的解决方案,以增强应对全球变化的恢复力并将风险降至最低,同时减轻低产和产量波动的社会和土壤驱动因素。