PSL Research University, Chimie ParisTech, Unité de Technologies Chimiques et Biologiques pour la Santé, 75005, Paris, France; INSERM, Unité de Technologies Chimiques et Biologiques pour la Santé (U 1022), 75006, Paris, France; CNRS, Unité de Technologies Chimiques et Biologiques pour la Santé UMR 8258, 75006, Paris, France; Université Paris Descartes, Sorbonne Paris Cité, Unité de Technologies Chimiques et Biologiques pour la Santé, 75006, Paris, France; Departamento de Química, Universidad de Guanajuato, 36050, Guanajuato, Mexico; Departamento de Farmacia, Universidad de Guanajuato, 36050, Guanajuato, Mexico.
PSL Research University, Chimie ParisTech, Unité de Technologies Chimiques et Biologiques pour la Santé, 75005, Paris, France; INSERM, Unité de Technologies Chimiques et Biologiques pour la Santé (U 1022), 75006, Paris, France; CNRS, Unité de Technologies Chimiques et Biologiques pour la Santé UMR 8258, 75006, Paris, France; Université Paris Descartes, Sorbonne Paris Cité, Unité de Technologies Chimiques et Biologiques pour la Santé, 75006, Paris, France.
Colloids Surf B Biointerfaces. 2017 Nov 1;159:437-444. doi: 10.1016/j.colsurfb.2017.08.012. Epub 2017 Aug 12.
Nanoparticles (NPs) play an increasingly important role in the development of new biosensors, contrast agents for biomedical imaging and targeted therapy vectors thanks to their unique properties as well as their good detection sensitivity. However, a current challenge in developing such NPs is to ensure their biocompatibility, biodistribution, bioreactivity and in vivo stability. In the biomedical field, the adsorption of plasmatic proteins on the surface of NPs impacts on their circulation time in blood, degradation, biodistribution, accessibility, the efficiency of possible targeting agents on their surface, and their cellular uptake. NP surface passivation is therefore a very crucial challenge in biomedicine. We developed herein for the first time an electrokinetic Hummel-Dreyer method to quantitatively characterize the formation of protein corona on the surface of NPs. This strategy was designed and optimized to evaluate the non specific binding of bovine serum albumin with the recently discovered PEG-functionalized ZnGaCrO persistent luminescence NPs developed for in vivo biological imaging. The binding strength and the number of binding sites were determined at different ionic strengths. This methodology opens the way to an easy, low sample- and low time-consuming evaluation of the impact of NP surface modification on protein-corona formation and therefore on their potential for various bio-medical applications.
纳米粒子 (NPs) 由于其独特的性质以及良好的检测灵敏度,在新型生物传感器、生物医学成像对比剂和靶向治疗载体的开发中发挥着越来越重要的作用。然而,开发此类 NPs 的一个当前挑战是确保它们的生物相容性、生物分布、生物反应性和体内稳定性。在生物医学领域,血浆蛋白在 NPs 表面的吸附会影响它们在血液中的循环时间、降解、生物分布、可及性、表面可能的靶向剂的效率以及它们的细胞摄取。因此,NP 表面钝化是生物医学中一个非常关键的挑战。我们首次开发了一种电动 Hummel-Dreyer 方法来定量表征 NPs 表面形成的蛋白质冠。该策略旨在评估最近发现的用于体内生物成像的 PEG 功能化 ZnGaCrO 持续发光 NPs 与牛血清白蛋白的非特异性结合。在不同离子强度下确定了结合强度和结合位点的数量。这种方法为评估 NP 表面改性对蛋白质冠形成的影响以及它们在各种生物医学应用中的潜力提供了一种简单、低样品和低时间消耗的方法。