Solid-Biological Interface Group (SolBIN), Department of Physics, Federal University of Ceará, P.O. Box 6030, 60455-900 Fortaleza, CE, Brazil; Brazilian Nanotechnology National Laboratory (LNNano), Brazilian Center for Research in Energy and Materials (CNPEM), Zip Code 13083-970 Campinas, São Paulo, Brazil.
Solid-Biological Interface Group (SolBIN), Department of Physics, Federal University of Ceará, P.O. Box 6030, 60455-900 Fortaleza, CE, Brazil.
Mater Sci Eng C Mater Biol Appl. 2019 Dec;105:110080. doi: 10.1016/j.msec.2019.110080. Epub 2019 Aug 13.
To counter the undesired colloidal destabilization of nanoparticles in biologically-compatible media of high ionic strength (i.e. NaCl, phosphate buffer), polymers can be added to nanoparticle suspensions that will be used in biomedical applications. In these suspensions, polymers can promote high colloidal stability by manifestation of steric and/or depletion forces. However, little is known about the influence of these polymers on the interactions between nanoparticles and the biological components of the organism, such as proteins and cells. In this work, it was shown that the addition of the polymers (i) Pluronic-F127 (PF127), (ii) polyethylene glycol (PEG) of different molecular weights - 1.5, 12 and 35 kDa - and (iii) the protein bovine serum albumin (BSA) on colloidal silica nanoparticles (CSNPs; 135 nm) dispersed in phosphate-buffered saline (PBS) largely alter their colloidal stability through different mechanisms. Although all polymers were adsorbed on the CSNP surface, BSA maintained the CSNP dispersion in the medium by electrosteric stabilization mechanisms, while PEG and PF127 led to the occurrence of depletion forces between the particles. In addition, it was found that the interactions between polymers and CSNPs did not prevent proteins to access the nanoparticles' surface and have minimal effect on the formation of the protein corona when they were incubated in human blood plasma. On the other hand, BSA had a greater effect on the CSNP protein corona profile compared to other polymers (PEG and PF127). Together, these results confirm that biocompatible polymers PEG and PF127 can be used as colloidal stabilizing agents for nanoparticles since they preserve the accessibility of biomolecules to the nanoparticle surface, and they have little effect on the protein corona composition.
为了防止纳米粒子在具有高离子强度的生物相容介质(如 NaCl、磷酸盐缓冲液)中发生不理想的胶体失稳,可将聚合物添加到纳米粒子悬浮液中,这些悬浮液将用于生物医学应用。在这些悬浮液中,聚合物可以通过表现出空间和/或耗尽力来促进高胶体稳定性。然而,人们对这些聚合物对纳米粒子与生物体的生物成分(如蛋白质和细胞)之间相互作用的影响知之甚少。在这项工作中,表明添加聚合物 (i) Pluronic-F127 (PF127)、(ii) 不同分子量的聚乙二醇 (PEG) - 1.5、12 和 35 kDa - 和 (iii) 牛血清白蛋白 (BSA) 会改变胶体二氧化硅纳米粒子 (CSNP;135nm) 在磷酸盐缓冲盐水 (PBS) 中的胶体稳定性,这主要是通过不同的机制实现的。尽管所有聚合物都被吸附在 CSNP 表面上,但 BSA 通过电动稳定机制维持 CSNP 在介质中的分散,而 PEG 和 PF127 导致颗粒之间发生耗尽力。此外,还发现聚合物和 CSNPs 之间的相互作用不会阻止蛋白质进入纳米粒子表面,并且当它们在人血浆中孵育时,对蛋白质冠的形成影响最小。另一方面,BSA 对 CSNP 蛋白冠谱的影响大于其他聚合物(PEG 和 PF127)。总之,这些结果证实了生物相容聚合物 PEG 和 PF127 可用作纳米粒子的胶体稳定剂,因为它们保持了生物分子对纳米粒子表面的可及性,并且对蛋白质冠组成的影响很小。
Mater Sci Eng C Mater Biol Appl. 2019-8-13
Colloids Surf B Biointerfaces. 2019-4-6
ACS Appl Mater Interfaces. 2014-2-26
Colloids Surf B Biointerfaces. 2012-12-3
Colloids Surf B Biointerfaces. 2013-3-4
Eur J Pharm Biopharm. 2019-5-10
Colloids Surf B Biointerfaces. 2019-11-28
Colloids Surf B Biointerfaces. 2018-5-28
Int J Pharm X. 2022-10-21
Nanoscale Adv. 2020-1-9