Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Canada.
Department of Molecular Genetics, University of Toronto, Toronto, Canada.
Elife. 2017 Aug 3;6:e23783. doi: 10.7554/eLife.23783.
DNA double-strand breaks (DSBs) and short telomeres are structurally similar, yet they have diametrically opposed fates. Cells must repair DSBs while blocking the action of telomerase on these ends. Short telomeres must avoid recognition by the DNA damage response while promoting telomerase recruitment. In the Pif1 helicase, a telomerase inhibitor, lies at the interface of these end-fate decisions. Using Pif1 as a sensor, we uncover a transition point in which 34 bp of telomeric (TG) repeat sequence renders a DNA end insensitive to Pif1 action, thereby enabling extension by telomerase. A similar transition point exists at natural chromosome ends, where telomeres shorter than ~40 bp are inefficiently extended by telomerase. This phenomenon is not due to known Pif1 modifications and we instead propose that Cdc13 renders TG ends insensitive to Pif1 action. We contend that the observed threshold of Pif1 activity defines a dividing line between DSBs and telomeres.
DNA 双链断裂 (DSB) 和短端粒在结构上相似,但它们的命运却截然相反。细胞必须修复 DSB,同时阻止端粒酶在这些末端发挥作用。短端粒必须避免被 DNA 损伤反应识别,同时促进端粒酶的招募。在 Pif1 解旋酶(一种端粒酶抑制剂)中,它位于这些末端命运决定的界面上。我们利用 Pif1 作为传感器,发现了一个转折点,在这个转折点上,34 个碱基对的端粒 (TG) 重复序列使 DNA 末端对 Pif1 的作用不敏感,从而使端粒酶能够进行延伸。在自然染色体末端也存在类似的转折点,其中短于约 40 个碱基对的端粒不能有效地被端粒酶延伸。这种现象不是由于已知的 Pif1 修饰引起的,相反,我们提出 Cdc13 使 TG 末端对 Pif1 的作用不敏感。我们认为,观察到的 Pif1 活性阈值定义了 DSB 和端粒之间的分界线。