Samuel Lunenfeld Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada.
Genes Dev. 2010 Mar 1;24(5):502-15. doi: 10.1101/gad.1869110.
DNA double-strand breaks (DSBs) are a threat to cell survival and genome integrity. In addition to canonical DNA repair systems, DSBs can be converted to telomeres by telomerase. This process, herein termed telomere healing, endangers genome stability, since it usually results in chromosome arm loss. Therefore, cells possess mechanisms that prevent the untimely action of telomerase on DSBs. Here we report that Mec1, the ATR ortholog, couples the detection of DNA ends with the inhibition of telomerase. Mec1 inhibits telomere healing by phosphorylating Cdc13 on its S306 residue, a phosphorylation event that suppresses Cdc13 accumulation at DSBs. Conversely, telomere addition at accidental breaks is promoted by Pph3, the yeast protein phosphatase 4 (PP4). Pph3 is itself modulated by Rrd1, an activator of PP2A family phosphatases. Rrd1 and Pph3 oppose Cdc13 S306 phosphorylation and are necessary for the efficient accumulation of Cdc13 at DNA breaks. These studies therefore identify a mechanism by which the ATR family of kinases enforces genome integrity, and a process that underscores the contribution of Cdc13 to the fate of DNA ends.
DNA 双链断裂 (DSBs) 对细胞存活和基因组完整性构成威胁。除了经典的 DNA 修复系统外,DSBs 还可以通过端粒酶转化为端粒。这个过程,在这里被称为端粒修复,会危及基因组稳定性,因为它通常导致染色体臂的缺失。因此,细胞具有防止端粒酶在 DSB 上过早作用的机制。在这里,我们报告说,ATR 同源物 Mec1 将 DNA 末端的检测与端粒酶的抑制联系起来。Mec1 通过磷酸化 Cdc13 的 S306 残基来抑制端粒修复,该磷酸化事件抑制了 Cdc13 在 DSB 处的积累。相反,意外断裂处的端粒添加由酵母蛋白磷酸酶 4 (PP4) 的 Pph3 促进。Pph3 本身受 Rrd1 调节,Rrd1 是 PP2A 家族磷酸酶的激活剂。Rrd1 和 Pph3 与 Cdc13 S306 磷酸化相抗衡,并且是 Cdc13 在 DNA 断裂处有效积累所必需的。因此,这些研究确定了 ATR 激酶家族强制基因组完整性的机制,以及突出 Cdc13 对 DNA 末端命运的贡献的过程。