Suppr超能文献

从头端形成被 Mec1 依赖的抑制 Cdc13 在 DNA 断裂处积累所抑制。

De novo telomere formation is suppressed by the Mec1-dependent inhibition of Cdc13 accumulation at DNA breaks.

机构信息

Samuel Lunenfeld Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada.

出版信息

Genes Dev. 2010 Mar 1;24(5):502-15. doi: 10.1101/gad.1869110.

Abstract

DNA double-strand breaks (DSBs) are a threat to cell survival and genome integrity. In addition to canonical DNA repair systems, DSBs can be converted to telomeres by telomerase. This process, herein termed telomere healing, endangers genome stability, since it usually results in chromosome arm loss. Therefore, cells possess mechanisms that prevent the untimely action of telomerase on DSBs. Here we report that Mec1, the ATR ortholog, couples the detection of DNA ends with the inhibition of telomerase. Mec1 inhibits telomere healing by phosphorylating Cdc13 on its S306 residue, a phosphorylation event that suppresses Cdc13 accumulation at DSBs. Conversely, telomere addition at accidental breaks is promoted by Pph3, the yeast protein phosphatase 4 (PP4). Pph3 is itself modulated by Rrd1, an activator of PP2A family phosphatases. Rrd1 and Pph3 oppose Cdc13 S306 phosphorylation and are necessary for the efficient accumulation of Cdc13 at DNA breaks. These studies therefore identify a mechanism by which the ATR family of kinases enforces genome integrity, and a process that underscores the contribution of Cdc13 to the fate of DNA ends.

摘要

DNA 双链断裂 (DSBs) 对细胞存活和基因组完整性构成威胁。除了经典的 DNA 修复系统外,DSBs 还可以通过端粒酶转化为端粒。这个过程,在这里被称为端粒修复,会危及基因组稳定性,因为它通常导致染色体臂的缺失。因此,细胞具有防止端粒酶在 DSB 上过早作用的机制。在这里,我们报告说,ATR 同源物 Mec1 将 DNA 末端的检测与端粒酶的抑制联系起来。Mec1 通过磷酸化 Cdc13 的 S306 残基来抑制端粒修复,该磷酸化事件抑制了 Cdc13 在 DSB 处的积累。相反,意外断裂处的端粒添加由酵母蛋白磷酸酶 4 (PP4) 的 Pph3 促进。Pph3 本身受 Rrd1 调节,Rrd1 是 PP2A 家族磷酸酶的激活剂。Rrd1 和 Pph3 与 Cdc13 S306 磷酸化相抗衡,并且是 Cdc13 在 DNA 断裂处有效积累所必需的。因此,这些研究确定了 ATR 激酶家族强制基因组完整性的机制,以及突出 Cdc13 对 DNA 末端命运的贡献的过程。

相似文献

2
Cdc13 telomere capping decreases Mec1 association but does not affect Tel1 association with DNA ends.
Mol Biol Cell. 2007 Jun;18(6):2026-36. doi: 10.1091/mbc.e06-12-1074. Epub 2007 Mar 21.
3
Endogenous Hot Spots of De Novo Telomere Addition in the Yeast Genome Contain Proximal Enhancers That Bind Cdc13.
Mol Cell Biol. 2016 May 31;36(12):1750-63. doi: 10.1128/MCB.00095-16. Print 2016 Jun 15.
7
Cell cycle-dependent spatial segregation of telomerase from sites of DNA damage.
J Cell Biol. 2017 Aug 7;216(8):2355-2371. doi: 10.1083/jcb.201610071. Epub 2017 Jun 21.
8
Telomerase recruitment in Saccharomyces cerevisiae is not dependent on Tel1-mediated phosphorylation of Cdc13.
Genetics. 2010 Dec;186(4):1147-59. doi: 10.1534/genetics.110.122044. Epub 2010 Sep 13.
9
Interaction of yeast Rad51 and Rad52 relieves Rad52-mediated inhibition of de novo telomere addition.
PLoS Genet. 2020 Feb 3;16(2):e1008608. doi: 10.1371/journal.pgen.1008608. eCollection 2020 Feb.
10
Increased association of telomerase with short telomeres in yeast.
Genes Dev. 2007 Jul 15;21(14):1726-30. doi: 10.1101/gad.438907.

引用本文的文献

1
Flexible Attachment and Detachment of Centromeres and Telomeres to and from Chromosomes.
Biomolecules. 2023 Jun 20;13(6):1016. doi: 10.3390/biom13061016.
5
Role and Regulation of Pif1 Family Helicases at the Replication Fork.
Int J Mol Sci. 2022 Mar 29;23(7):3736. doi: 10.3390/ijms23073736.
6
Telomeres and Cancer.
Life (Basel). 2021 Dec 16;11(12):1405. doi: 10.3390/life11121405.
7
Telomerase subunit Est2 marks internal sites that are prone to accumulate DNA damage.
BMC Biol. 2021 Nov 20;19(1):247. doi: 10.1186/s12915-021-01167-1.
8
When the Ends Justify the Means: Regulation of Telomere Addition at Double-Strand Breaks in Yeast.
Front Cell Dev Biol. 2021 Mar 18;9:655377. doi: 10.3389/fcell.2021.655377. eCollection 2021.
9
Emerging non-canonical roles for the Rad51-Rad52 interaction in response to double-strand breaks in yeast.
Curr Genet. 2020 Oct;66(5):917-926. doi: 10.1007/s00294-020-01081-z. Epub 2020 May 12.

本文引用的文献

1
DNA damage signalling prevents deleterious telomere addition at DNA breaks.
Nat Cell Biol. 2009 Nov;11(11):1383-6. doi: 10.1038/ncb1985. Epub 2009 Oct 18.
2
Faithful after break-up: suppression of chromosomal translocations.
Cell Mol Life Sci. 2009 Oct;66(19):3149-60. doi: 10.1007/s00018-009-0068-5. Epub 2009 Jun 23.
3
Mechanisms that regulate localization of a DNA double-strand break to the nuclear periphery.
Genes Dev. 2009 Apr 15;23(8):912-27. doi: 10.1101/gad.1782209.
5
Saccharomyces cerevisiae ATM orthologue suppresses break-induced chromosome translocations.
Nature. 2008 Jul 24;454(7203):543-6. doi: 10.1038/nature07054.
6
Genome-wide analysis of Rad52 foci reveals diverse mechanisms impacting recombination.
PLoS Genet. 2007 Dec;3(12):e228. doi: 10.1371/journal.pgen.0030228.
7
The role of Stn1p in Saccharomyces cerevisiae telomere capping can be separated from its interaction with Cdc13p.
Genetics. 2007 Nov;177(3):1459-74. doi: 10.1534/genetics.107.078840. Epub 2007 Oct 18.
9
Proteome-wide identification of in vivo targets of DNA damage checkpoint kinases.
Proc Natl Acad Sci U S A. 2007 Jun 19;104(25):10364-9. doi: 10.1073/pnas.0701622104. Epub 2007 Jun 11.
10
RPA-like proteins mediate yeast telomere function.
Nat Struct Mol Biol. 2007 Mar;14(3):208-14. doi: 10.1038/nsmb1205. Epub 2007 Feb 11.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验