Scripps Institution of Oceanography, University of California, San Diego, La Jolla, CA 92093-0244;
Institut de Physique du Globe de Paris, Université Paris Diderot, Sorbonne Paris Cité, 75005 Paris, France.
Proc Natl Acad Sci U S A. 2017 Sep 5;114(36):9547-9551. doi: 10.1073/pnas.1708236114. Epub 2017 Aug 21.
The abundance of volatile elements and compounds, such as zinc, potassium, chlorine, and water, provide key evidence for how Earth and the Moon formed and evolved. Currently, evidence exists for a Moon depleted in volatile elements, as well as reservoirs within the Moon with volatile abundances like Earth's depleted upper mantle. Volatile depletion is consistent with catastrophic formation, such as a giant impact, whereas a Moon with Earth-like volatile abundances suggests preservation of these volatiles, or addition through late accretion. We show, using the "Rusty Rock" impact melt breccia, 66095, that volatile enrichment on the lunar surface occurred through vapor condensation. Isotopically light Zn (δZn = -13.7‰), heavy Cl (δCl = +15‰), and high U/Pb supports the origin of condensates from a volatile-poor internal source formed during thermomagmatic evolution of the Moon, with long-term depletion in incompatible Cl and Pb, and lesser depletion of more-compatible Zn. Leaching experiments on mare basalt 14053 demonstrate that isotopically light Zn condensates also occur on some mare basalts after their crystallization, confirming a volatile-depleted lunar interior source with homogeneous δZn ≈ +1.4‰. Our results show that much of the lunar interior must be significantly depleted in volatile elements and compounds and that volatile-rich rocks on the lunar surface formed through vapor condensation. Volatiles detected by remote sensing on the surface of the Moon likely have a partially condensate origin from its interior.
挥发元素和化合物(如锌、钾、氯和水)的丰度为地球和月球的形成和演化提供了关键证据。目前,有证据表明月球缺乏挥发元素,而月球内部的储层具有类似于地球亏损上地幔的挥发丰度。挥发元素的亏损与大碰撞等灾难性形成过程一致,而具有类似地球挥发丰度的月球则表明这些挥发物得以保存,或者通过晚期吸积作用得到补充。我们利用“生锈岩石”撞击熔融角砾岩 66095 表明,月球表面的挥发物富集是通过蒸汽冷凝实现的。轻锌同位素(δZn = -13.7‰)、重氯同位素(δCl = +15‰)和高 U/Pb 支持冷凝物源自月球热岩浆演化过程中形成的贫挥发物内部源,长期亏损不相容的 Cl 和 Pb,以及更相容的 Zn 亏损较小。对月海玄武岩 14053 的浸出实验表明,在结晶后,一些月海玄武岩上也存在同位素较轻的 Zn 冷凝物,这证实了月球内部源具有挥发性贫化的特征,δZn ≈ +1.4‰。我们的研究结果表明,月球内部大部分必须严重缺乏挥发元素和化合物,而富含挥发物的月球表面岩石是通过蒸汽冷凝形成的。月球表面遥感探测到的挥发物可能部分源自其内部的凝结物。