Earth and Planetary Sciences, University of New Mexico, Albuquerque, NM 87131-0001;
Center for Stable Isotopes, University of New Mexico, Albuquerque, NM 87131-0001.
Proc Natl Acad Sci U S A. 2020 Sep 22;117(38):23418-23425. doi: 10.1073/pnas.2014503117. Epub 2020 Sep 8.
Lunar mare basalts are depleted in F and Cl by approximately an order of magnitude relative to mid-ocean ridge basalts and contain two Cl-bearing components with elevated isotopic compositions relative to the bulk-Earth value of ∼0‰. The first is a water-soluble chloride constituting 65 ± 10% of total Cl with δCl values averaging 3.0 ± 4.3‰. The second is structurally bound chloride with δCl values averaging 7.3 ± 3.5‰. These high and distinctly different isotopic values are inconsistent with equilibrium fractionation processes and instead suggest early and extensive degassing of an isotopically light vapor. No relationship is observed between F/Cl ratios and δCl values, which suggests that lunar halogen depletion largely resulted from the Moon-forming Giant Impact. The δCl values of apatite are generally higher than the structurally bound Cl, and ubiquitously higher than the calculated bulk δCl values of 4.1 ± 4.0‰. The apatite grains are not representative of the bulk rock, and instead record localized degassing during the final stages of lunar magma ocean (LMO) or later melt crystallization. The large variability in the δCl values of apatite within individual thin sections further supports this conclusion. While urKREEP (primeval KREEP [potassium/rare-earth elements/phosphorus]) has been proposed to be the source of the Moon's high Cl isotope values, the ferroan anorthosites (FANs) have the highest δCl values and have a positive correlation with Cl content, and yet do not contain apatite, nor evidence of a KREEP component. The high δCl values in this lithology are explained by the incorporation of a >30‰ HCl vapor from a highly evolved LMO.
月海玄武岩中的氟和氯相对于大洋中脊玄武岩分别亏损了一个数量级,并且含有两种含氯成分,其同位素组成相对于地球的平均值(约 0‰)显著升高。第一种是水溶性氯化物,占总氯的 65±10%,其 δCl 值平均为 3.0±4.3‰。第二种是结构结合氯,其 δCl 值平均为 7.3±3.5‰。这些高且明显不同的同位素值与平衡分馏过程不一致,而是表明早期广泛的轻蒸气逸出。氟氯比值与 δCl 值之间没有观察到相关性,这表明月球卤素的消耗主要是由月球形成的大碰撞造成的。磷灰石的 δCl 值普遍高于结构结合氯,普遍高于计算得出的 4.1±4.0‰的总体 δCl 值。磷灰石颗粒不能代表整体岩石,而是记录了月球岩浆海洋(LMO)末期或后期熔体结晶过程中局部的气体逸出。个别薄片中磷灰石 δCl 值的巨大变化进一步支持了这一结论。虽然富 K 斜长岩(原始 KREEP [钾/稀土元素/磷])被认为是月球高氯同位素值的来源,但富钙斜长岩(FANs)具有最高的 δCl 值,并且与氯含量呈正相关,但它们不含磷灰石,也没有 KREEP 成分的证据。这种岩性中高的 δCl 值可以用高度演化的 LMO 中混入的>30‰ HCl 蒸气来解释。