Suppr超能文献

挥发性稳定同位素的蒸发分馏及其与月球起源的关系。

Evaporative fractionation of volatile stable isotopes and their bearing on the origin of the Moon.

作者信息

Day James M D, Moynier Frederic

机构信息

Scripps Isotope Geochemistry Laboratory, Geosciences Research Division, Scripps Institution of Oceanography, La Jolla, CA 92093-0244, USA

Institut de Physique du Globe de Paris, Université Paris Diderot, Sorbonne Paris Cité, 1 rue Jussieu, 75005 Paris, France.

出版信息

Philos Trans A Math Phys Eng Sci. 2014 Sep 13;372(2024):20130259. doi: 10.1098/rsta.2013.0259.

Abstract

The Moon is depleted in volatile elements relative to the Earth and Mars. Low abundances of volatile elements, fractionated stable isotope ratios of S, Cl, K and Zn, high μ ((238)U/(204)Pb) and long-term Rb/Sr depletion are distinguishing features of the Moon, relative to the Earth. These geochemical characteristics indicate both inheritance of volatile-depleted materials that formed the Moon and planets and subsequent evaporative loss of volatile elements that occurred during lunar formation and differentiation. Models of volatile loss through localized eruptive degassing are not consistent with the available S, Cl, Zn and K isotopes and abundance data for the Moon. The most probable cause of volatile depletion is global-scale evaporation resulting from a giant impact or a magma ocean phase where inefficient volatile loss during magmatic convection led to the present distribution of volatile elements within mantle and crustal reservoirs. Problems exist for models of planetary volatile depletion following giant impact. Most critically, in this model, the volatile loss requires preferential delivery and retention of late-accreted volatiles to the Earth compared with the Moon. Different proportions of late-accreted mass are computed to explain present-day distributions of volatile and moderately volatile elements (e.g. Pb, Zn; 5 to >10%) relative to highly siderophile elements (approx. 0.5%) for the Earth. Models of early magma ocean phases may be more effective in explaining the volatile loss. Basaltic materials (e.g. eucrites and angrites) from highly differentiated airless asteroids are volatile-depleted, like the Moon, whereas the Earth and Mars have proportionally greater volatile contents. Parent-body size and the existence of early atmospheres are therefore likely to represent fundamental controls on planetary volatile retention or loss.

摘要

相对于地球和火星,月球中的挥发性元素较为匮乏。挥发性元素含量低、硫、氯、钾和锌的稳定同位素比值分馏、高μ值((238)U/(204)Pb)以及长期的铷/锶亏损是月球相对于地球的显著特征。这些地球化学特征既表明了形成月球和行星的挥发性元素匮乏物质的继承性,也表明了月球形成和分化过程中挥发性元素随后的蒸发损失。通过局部喷发排气导致挥发性元素损失的模型与月球现有的硫、氯、锌和钾同位素及丰度数据不一致。挥发性元素匮乏最可能的原因是由巨大撞击或岩浆海洋阶段导致的全球尺度蒸发,在岩浆海洋阶段,岩浆对流过程中挥发性元素损失效率低下,导致了挥发性元素在地幔和地壳储库中的当前分布。巨大撞击后行星挥发性元素亏损的模型存在问题。最关键的是,在这个模型中,与月球相比,挥发性元素的损失需要后期吸积的挥发性元素优先输送并保留在地球上。为了解释地球中挥发性和中度挥发性元素(如铅、锌;5%至>10%)相对于高度亲铁元素(约0.5%)的当前分布,计算了不同比例的后期吸积物质。早期岩浆海洋阶段的模型可能更有效地解释挥发性元素损失。来自高度分化的无气小行星的玄武质物质(如钙长辉长无球粒陨石和紫苏钙长无球粒陨石)与月球一样,挥发性元素匮乏,而地球和火星的挥发性含量相对较高。因此,母体大小和早期大气层的存在可能是控制行星挥发性元素保留或损失的基本因素。

相似文献

1
Evaporative fractionation of volatile stable isotopes and their bearing on the origin of the Moon.
Philos Trans A Math Phys Eng Sci. 2014 Sep 13;372(2024):20130259. doi: 10.1098/rsta.2013.0259.
2
Zinc isotopic evidence for the origin of the Moon.
Nature. 2012 Oct 18;490(7420):376-9. doi: 10.1038/nature11507.
3
Late-stage magmatic outgassing from a volatile-depleted Moon.
Proc Natl Acad Sci U S A. 2017 Sep 5;114(36):9547-9551. doi: 10.1073/pnas.1708236114. Epub 2017 Aug 21.
4
Gallium isotopic evidence for extensive volatile loss from the Moon during its formation.
Sci Adv. 2017 Jul 28;3(7):e1700571. doi: 10.1126/sciadv.1700571. eCollection 2017 Jul.
5
Silicon isotopes in angrites and volatile loss in planetesimals.
Proc Natl Acad Sci U S A. 2014 Dec 2;111(48):17029-32. doi: 10.1073/pnas.1418889111. Epub 2014 Nov 17.
6
Potassium isotope composition of Mars reveals a mechanism of planetary volatile retention.
Proc Natl Acad Sci U S A. 2021 Sep 28;118(39). doi: 10.1073/pnas.2101155118.
7
Extensive volatile loss during formation and differentiation of the Moon.
Nat Commun. 2015 Jul 3;6:7617. doi: 10.1038/ncomms8617.
8
Geochemistry and Cosmochemistry of Potassium Stable Isotopes.
Chem Erde. 2021 Sep;81(3). doi: 10.1016/j.chemer.2021.125786. Epub 2021 Jun 9.
9
Siderophile element constraints on the origin of the Moon.
Philos Trans A Math Phys Eng Sci. 2014 Sep 13;372(2024):20130258. doi: 10.1098/rsta.2013.0258.
10
Rubidium isotopic compositions of angrites controlled by extensive evaporation and partial recondensation.
Proc Natl Acad Sci U S A. 2024 Jan 2;121(1):e2311402121. doi: 10.1073/pnas.2311402121. Epub 2023 Dec 26.

引用本文的文献

1
Impact-induced sublimation drives volatile depletion in carbonaceous meteorites.
Nat Commun. 2025 Jul 3;16(1):6146. doi: 10.1038/s41467-025-61115-3.
2
Sulfur isotopes from the lunar farside reveal global volatile loss following the giant impact.
Nat Commun. 2025 Jul 1;16(1):5780. doi: 10.1038/s41467-025-60743-z.
3
Contribution of Ryugu-like material to Earth's volatile inventory by Cu and Zn isotopic analysis.
Nat Astron. 2022 Dec 12;7(2):182-189. doi: 10.1038/s41550-022-01846-1.
4
Rubidium isotopic compositions of angrites controlled by extensive evaporation and partial recondensation.
Proc Natl Acad Sci U S A. 2024 Jan 2;121(1):e2311402121. doi: 10.1073/pnas.2311402121. Epub 2023 Dec 26.
5
High Temperature Evaporation and Isotopic Fractionation of K and Cu.
Geochim Cosmochim Acta. 2022 Jan 1;316:1-20. doi: 10.1016/j.gca.2021.09.035. Epub 2021 Oct 13.
6
Analytical protocols for Phobos regolith samples returned by the Martian Moons eXploration (MMX) mission.
Earth Planets Space. 2021;73(1):120. doi: 10.1186/s40623-021-01438-9. Epub 2021 Jun 1.
7
Potassium isotope composition of Mars reveals a mechanism of planetary volatile retention.
Proc Natl Acad Sci U S A. 2021 Sep 28;118(39). doi: 10.1073/pnas.2101155118.
8
Conditions and extent of volatile loss from the Moon during formation of the Procellarum basin.
Proc Natl Acad Sci U S A. 2021 Mar 23;118(12). doi: 10.1073/pnas.2023023118.
9
The Cl isotope composition and halogen contents of Apollo-return samples.
Proc Natl Acad Sci U S A. 2020 Sep 22;117(38):23418-23425. doi: 10.1073/pnas.2014503117. Epub 2020 Sep 8.
10
LUNAR VOLATILE DEPLETION DUE TO INCOMPLETE ACCRETION WITHIN AN IMPACT-GENERATED DISK.
Nat Geosci. 2015;8:918-921. doi: 10.1038/ngeo2574. Epub 2015 Nov 9.

本文引用的文献

1
Isotopic links between atmospheric chemistry and the deep sulphur cycle on Mars.
Nature. 2014 Apr 17;508(7496):364-8. doi: 10.1038/nature13175.
2
Non-chondritic sulphur isotope composition of the terrestrial mantle.
Nature. 2013 Sep 12;501(7466):208-11. doi: 10.1038/nature12490. Epub 2013 Sep 4.
3
Terrestrial accretion under oxidizing conditions.
Science. 2013 Mar 8;339(6124):1194-7. doi: 10.1126/science.1227923. Epub 2013 Jan 10.
4
Making the Moon from a fast-spinning Earth: a giant impact followed by resonant despinning.
Science. 2012 Nov 23;338(6110):1047-52. doi: 10.1126/science.1225542. Epub 2012 Oct 17.
5
Forming a Moon with an Earth-like composition via a giant impact.
Science. 2012 Nov 23;338(6110):1052-5. doi: 10.1126/science.1226073. Epub 2012 Oct 17.
6
Zinc isotopic evidence for the origin of the Moon.
Nature. 2012 Oct 18;490(7420):376-9. doi: 10.1038/nature11507.
7
Silicon isotope evidence against an enstatite chondrite Earth.
Science. 2012 Mar 23;335(6075):1477-80. doi: 10.1126/science.1219509. Epub 2012 Mar 1.
8
Chronological evidence that the Moon is either young or did not have a global magma ocean.
Nature. 2011 Aug 17;477(7362):70-2. doi: 10.1038/nature10328.
9
High pre-eruptive water contents preserved in lunar melt inclusions.
Science. 2011 Jul 8;333(6039):213-5. doi: 10.1126/science.1204626. Epub 2011 May 26.
10
Hf-W-Th evidence for rapid growth of Mars and its status as a planetary embryo.
Nature. 2011 May 26;473(7348):489-92. doi: 10.1038/nature10077.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验