Day James M D, Moynier Frederic
Scripps Isotope Geochemistry Laboratory, Geosciences Research Division, Scripps Institution of Oceanography, La Jolla, CA 92093-0244, USA
Institut de Physique du Globe de Paris, Université Paris Diderot, Sorbonne Paris Cité, 1 rue Jussieu, 75005 Paris, France.
Philos Trans A Math Phys Eng Sci. 2014 Sep 13;372(2024):20130259. doi: 10.1098/rsta.2013.0259.
The Moon is depleted in volatile elements relative to the Earth and Mars. Low abundances of volatile elements, fractionated stable isotope ratios of S, Cl, K and Zn, high μ ((238)U/(204)Pb) and long-term Rb/Sr depletion are distinguishing features of the Moon, relative to the Earth. These geochemical characteristics indicate both inheritance of volatile-depleted materials that formed the Moon and planets and subsequent evaporative loss of volatile elements that occurred during lunar formation and differentiation. Models of volatile loss through localized eruptive degassing are not consistent with the available S, Cl, Zn and K isotopes and abundance data for the Moon. The most probable cause of volatile depletion is global-scale evaporation resulting from a giant impact or a magma ocean phase where inefficient volatile loss during magmatic convection led to the present distribution of volatile elements within mantle and crustal reservoirs. Problems exist for models of planetary volatile depletion following giant impact. Most critically, in this model, the volatile loss requires preferential delivery and retention of late-accreted volatiles to the Earth compared with the Moon. Different proportions of late-accreted mass are computed to explain present-day distributions of volatile and moderately volatile elements (e.g. Pb, Zn; 5 to >10%) relative to highly siderophile elements (approx. 0.5%) for the Earth. Models of early magma ocean phases may be more effective in explaining the volatile loss. Basaltic materials (e.g. eucrites and angrites) from highly differentiated airless asteroids are volatile-depleted, like the Moon, whereas the Earth and Mars have proportionally greater volatile contents. Parent-body size and the existence of early atmospheres are therefore likely to represent fundamental controls on planetary volatile retention or loss.
相对于地球和火星,月球中的挥发性元素较为匮乏。挥发性元素含量低、硫、氯、钾和锌的稳定同位素比值分馏、高μ值((238)U/(204)Pb)以及长期的铷/锶亏损是月球相对于地球的显著特征。这些地球化学特征既表明了形成月球和行星的挥发性元素匮乏物质的继承性,也表明了月球形成和分化过程中挥发性元素随后的蒸发损失。通过局部喷发排气导致挥发性元素损失的模型与月球现有的硫、氯、锌和钾同位素及丰度数据不一致。挥发性元素匮乏最可能的原因是由巨大撞击或岩浆海洋阶段导致的全球尺度蒸发,在岩浆海洋阶段,岩浆对流过程中挥发性元素损失效率低下,导致了挥发性元素在地幔和地壳储库中的当前分布。巨大撞击后行星挥发性元素亏损的模型存在问题。最关键的是,在这个模型中,与月球相比,挥发性元素的损失需要后期吸积的挥发性元素优先输送并保留在地球上。为了解释地球中挥发性和中度挥发性元素(如铅、锌;5%至>10%)相对于高度亲铁元素(约0.5%)的当前分布,计算了不同比例的后期吸积物质。早期岩浆海洋阶段的模型可能更有效地解释挥发性元素损失。来自高度分化的无气小行星的玄武质物质(如钙长辉长无球粒陨石和紫苏钙长无球粒陨石)与月球一样,挥发性元素匮乏,而地球和火星的挥发性含量相对较高。因此,母体大小和早期大气层的存在可能是控制行星挥发性元素保留或损失的基本因素。