Suppr超能文献

离子在水界面吸附的机理:石墨烯/水与空气/水的对比。

Mechanism of ion adsorption to aqueous interfaces: Graphene/water vs. air/water.

机构信息

Department of Chemistry, University of California, Berkeley, CA 94720.

Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720.

出版信息

Proc Natl Acad Sci U S A. 2017 Dec 19;114(51):13369-13373. doi: 10.1073/pnas.1702760114. Epub 2017 Aug 21.

Abstract

The adsorption of ions to aqueous interfaces is a phenomenon that profoundly influences vital processes in many areas of science, including biology, atmospheric chemistry, electrical energy storage, and water process engineering. Although classical electrostatics theory predicts that ions are repelled from water/hydrophobe (e.g., air/water) interfaces, both computer simulations and experiments have shown that chaotropic ions actually exhibit enhanced concentrations at the air/water interface. Although mechanistic pictures have been developed to explain this counterintuitive observation, their general applicability, particularly in the presence of material substrates, remains unclear. Here we investigate ion adsorption to the model interface formed by water and graphene. Deep UV second harmonic generation measurements of the SCN ion, a prototypical chaotrope, determined a free energy of adsorption within error of that for air/water. Unlike for the air/water interface, wherein repartitioning of the solvent energy drives ion adsorption, our computer simulations reveal that direct ion/graphene interactions dominate the favorable enthalpy change. Moreover, the graphene sheets dampen capillary waves such that rotational anisotropy of the solute, if present, is the dominant entropy contribution, in contrast to the air/water interface.

摘要

离子在水界面上的吸附是一种普遍存在的现象,它深刻地影响着许多科学领域的重要过程,包括生物学、大气化学、电能存储和水加工工程。尽管经典的静电理论预测离子会被排斥出亲水界面(例如空气/水界面),但计算机模拟和实验都表明,离液离子实际上在空气/水界面处具有增强的浓度。尽管已经提出了一些机制图来解释这种违反直觉的观察结果,但它们的普遍适用性,特别是在存在材料基底的情况下,仍然不清楚。在这里,我们研究了离子在水和石墨烯形成的模型界面上的吸附。用深紫外二次谐波产生技术测量 SCN 离子(一种典型的离液盐),确定其在水和石墨烯界面上的吸附自由能与在空气/水界面上的吸附自由能几乎相同。与在空气/水界面上,溶剂能量的再分配驱动离子吸附不同,我们的计算机模拟表明,直接的离子/石墨烯相互作用主导了有利的焓变。此外,石墨烯片抑制了毛细波,使得溶质的旋转各向异性(如果存在)成为主要的熵贡献,这与空气/水界面形成对比。

相似文献

1
Mechanism of ion adsorption to aqueous interfaces: Graphene/water vs. air/water.离子在水界面吸附的机理:石墨烯/水与空气/水的对比。
Proc Natl Acad Sci U S A. 2017 Dec 19;114(51):13369-13373. doi: 10.1073/pnas.1702760114. Epub 2017 Aug 21.
2
On the mechanisms of ion adsorption to aqueous interfaces: air-water vs. oil-water.关于离子在水界面吸附的机理:气-水对比油-水。
Proc Natl Acad Sci U S A. 2022 Oct 18;119(42):e2210857119. doi: 10.1073/pnas.2210857119. Epub 2022 Oct 10.
5
Elucidating the mechanism of selective ion adsorption to the liquid water surface.阐明选择性离子吸附到液态水表面的机制。
Proc Natl Acad Sci U S A. 2012 Jan 17;109(3):701-5. doi: 10.1073/pnas.1116169109. Epub 2012 Jan 10.
9
Spiers Memorial Lecture. Ions at aqueous interfaces.斯皮尔斯纪念讲座。水界面处的离子。
Faraday Discuss. 2009;141:9-30; discussion 81-98. doi: 10.1039/b816684f.

引用本文的文献

7
Fluids and Electrolytes under Confinement in Single-Digit Nanopores.受限于个位数纳米孔中的流体和电解质。
Chem Rev. 2023 Mar 22;123(6):2737-2831. doi: 10.1021/acs.chemrev.2c00155. Epub 2023 Mar 10.
9
On the mechanisms of ion adsorption to aqueous interfaces: air-water vs. oil-water.关于离子在水界面吸附的机理:气-水对比油-水。
Proc Natl Acad Sci U S A. 2022 Oct 18;119(42):e2210857119. doi: 10.1073/pnas.2210857119. Epub 2022 Oct 10.

本文引用的文献

1
Effective Polarization in Pairwise Potentials at the Graphene-Electrolyte Interface.石墨烯-电解质界面成对势中的有效极化
J Phys Chem Lett. 2017 Feb 2;8(3):703-708. doi: 10.1021/acs.jpclett.6b02783. Epub 2017 Jan 25.
2
Interfacial solvation thermodynamics.界面溶剂化热力学
J Phys Condens Matter. 2016 Oct 19;28(41):414013. doi: 10.1088/0953-8984/28/41/414013. Epub 2016 Aug 22.
3
Insights from the Adsorption of Halide Ions on Graphene Materials.卤化物离子在石墨烯材料上吸附的研究洞察
Chemphyschem. 2016 Aug 18;17(16):2482-8. doi: 10.1002/cphc.201600271. Epub 2016 May 31.
4
Necessity of capillary modes in a minimal model of nanoscale hydrophobic solvation.纳米级疏水溶剂化最小模型中毛细管模式的必要性。
Proc Natl Acad Sci U S A. 2016 Apr 19;113(16):E2224-30. doi: 10.1073/pnas.1513659113. Epub 2016 Mar 8.
6
Water desalination using nanoporous single-layer graphene.使用纳米多孔单层石墨烯进行海水淡化。
Nat Nanotechnol. 2015 May;10(5):459-64. doi: 10.1038/nnano.2015.37. Epub 2015 Mar 23.
8
Beyond Hofmeister.超越霍夫迈斯特。
Nat Chem. 2014 Apr;6(4):261-3. doi: 10.1038/nchem.1899.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验