Department of Chemistry, University of California, Berkeley, CA 94720.
Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720.
Proc Natl Acad Sci U S A. 2017 Dec 19;114(51):13369-13373. doi: 10.1073/pnas.1702760114. Epub 2017 Aug 21.
The adsorption of ions to aqueous interfaces is a phenomenon that profoundly influences vital processes in many areas of science, including biology, atmospheric chemistry, electrical energy storage, and water process engineering. Although classical electrostatics theory predicts that ions are repelled from water/hydrophobe (e.g., air/water) interfaces, both computer simulations and experiments have shown that chaotropic ions actually exhibit enhanced concentrations at the air/water interface. Although mechanistic pictures have been developed to explain this counterintuitive observation, their general applicability, particularly in the presence of material substrates, remains unclear. Here we investigate ion adsorption to the model interface formed by water and graphene. Deep UV second harmonic generation measurements of the SCN ion, a prototypical chaotrope, determined a free energy of adsorption within error of that for air/water. Unlike for the air/water interface, wherein repartitioning of the solvent energy drives ion adsorption, our computer simulations reveal that direct ion/graphene interactions dominate the favorable enthalpy change. Moreover, the graphene sheets dampen capillary waves such that rotational anisotropy of the solute, if present, is the dominant entropy contribution, in contrast to the air/water interface.
离子在水界面上的吸附是一种普遍存在的现象,它深刻地影响着许多科学领域的重要过程,包括生物学、大气化学、电能存储和水加工工程。尽管经典的静电理论预测离子会被排斥出亲水界面(例如空气/水界面),但计算机模拟和实验都表明,离液离子实际上在空气/水界面处具有增强的浓度。尽管已经提出了一些机制图来解释这种违反直觉的观察结果,但它们的普遍适用性,特别是在存在材料基底的情况下,仍然不清楚。在这里,我们研究了离子在水和石墨烯形成的模型界面上的吸附。用深紫外二次谐波产生技术测量 SCN 离子(一种典型的离液盐),确定其在水和石墨烯界面上的吸附自由能与在空气/水界面上的吸附自由能几乎相同。与在空气/水界面上,溶剂能量的再分配驱动离子吸附不同,我们的计算机模拟表明,直接的离子/石墨烯相互作用主导了有利的焓变。此外,石墨烯片抑制了毛细波,使得溶质的旋转各向异性(如果存在)成为主要的熵贡献,这与空气/水界面形成对比。