Suppr超能文献

在贝叶斯Cox模型中整合多个基因组数据源进行变量选择和预测

Integration of Multiple Genomic Data Sources in a Bayesian Cox Model for Variable Selection and Prediction.

作者信息

Treppmann Tabea, Ickstadt Katja, Zucknick Manuela

机构信息

EXCO, Penzberg, Germany.

Department of Statistics, TU Dortmund University, Dortmund, Germany.

出版信息

Comput Math Methods Med. 2017;2017:7340565. doi: 10.1155/2017/7340565. Epub 2017 Jul 30.

Abstract

Bayesian variable selection becomes more and more important in statistical analyses, in particular when performing variable selection in high dimensions. For survival time models and in the presence of genomic data, the state of the art is still quite unexploited. One of the more recent approaches suggests a Bayesian semiparametric proportional hazards model for right censored time-to-event data. We extend this model to directly include variable selection, based on a stochastic search procedure within a Markov chain Monte Carlo sampler for inference. This equips us with an intuitive and flexible approach and provides a way for integrating additional data sources and further extensions. We make use of the possibility of implementing parallel tempering to help improve the mixing of the Markov chains. In our examples, we use this Bayesian approach to integrate copy number variation data into a gene-expression-based survival prediction model. This is achieved by formulating an informed prior based on copy number variation. We perform a simulation study to investigate the model's behavior and prediction performance in different situations before applying it to a dataset of glioblastoma patients and evaluating the biological relevance of the findings.

摘要

贝叶斯变量选择在统计分析中变得越来越重要,特别是在高维数据中进行变量选择时。对于生存时间模型以及在基因组数据存在的情况下,目前的技术水平仍未得到充分利用。最近的一种方法提出了一种用于右删失事件发生时间数据的贝叶斯半参数比例风险模型。我们基于马尔可夫链蒙特卡罗采样器中的随机搜索过程进行推理,将该模型扩展为直接包含变量选择。这为我们提供了一种直观且灵活的方法,并为整合其他数据源和进一步扩展提供了途径。我们利用实现并行回火的可能性来帮助改善马尔可夫链的混合。在我们的示例中,我们使用这种贝叶斯方法将拷贝数变异数据整合到基于基因表达的生存预测模型中。这是通过基于拷贝数变异制定一个明智的先验来实现的。在将其应用于胶质母细胞瘤患者数据集并评估结果的生物学相关性之前,我们进行了一项模拟研究,以研究该模型在不同情况下的行为和预测性能。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验