Shin Dmitriy, Kovalenko Mikhail, Ersoy Ilker, Li Yu, Doll Donald, Shyu Chi-Ren, Hammer Richard
Department of Pathology and Anatomical Sciences, University of Missouri, Columbia, Missouri, USA.
MU Informatics Institute, University of Missouri, Columbia, Missouri, USA.
J Pathol Inform. 2017 Jul 25;8:29. doi: 10.4103/jpi.jpi_29_17. eCollection 2017.
Visual heuristics of pathology diagnosis is a largely unexplored area where reported studies only provided a qualitative insight into the subject. Uncovering and quantifying pathology visual and nonvisual diagnostic patterns have great potential to improve clinical outcomes and avoid diagnostic pitfalls.
Here, we present PathEdEx, an informatics computational framework that incorporates whole-slide digital pathology imaging with multiscale gaze-tracking technology to create web-based interactive pathology educational atlases and to datamine visual and nonvisual diagnostic heuristics.
We demonstrate the capabilities of PathEdEx for mining visual and nonvisual diagnostic heuristics using the first PathEdEx volume of a hematopathology atlas. We conducted a quantitative study on the time dynamics of zooming and panning operations utilized by experts and novices to come to the correct diagnosis. We then performed association rule mining to determine sets of diagnostic factors that consistently result in a correct diagnosis, and studied differences in diagnostic strategies across different levels of pathology expertise using Markov chain (MC) modeling and MC Monte Carlo simulations. To perform these studies, we translated raw gaze points to high-explanatory semantic labels that represent pathology diagnostic clues. Therefore, the outcome of these studies is readily transformed into narrative descriptors for direct use in pathology education and practice.
PathEdEx framework can be used to capture best practices of pathology visual and nonvisual diagnostic heuristics that can be passed over to the next generation of pathologists and have potential to streamline implementation of precision diagnostics in precision medicine settings.
病理学诊断的视觉启发法是一个很大程度上未被探索的领域,已报道的研究仅对该主题提供了定性的见解。揭示并量化病理学视觉和非视觉诊断模式对于改善临床结果和避免诊断陷阱具有巨大潜力。
在此,我们展示了PathEdEx,这是一个信息学计算框架,它将全切片数字病理学成像与多尺度注视跟踪技术相结合,以创建基于网络的交互式病理学教育图谱,并挖掘视觉和非视觉诊断启发法。
我们使用血液病理学图谱的第一卷PathEdEx展示了PathEdEx挖掘视觉和非视觉诊断启发法的能力。我们对专家和新手为得出正确诊断所使用的缩放和平移操作的时间动态进行了定量研究。然后,我们进行了关联规则挖掘,以确定始终能得出正确诊断的诊断因素集,并使用马尔可夫链(MC)建模和MC蒙特卡洛模拟研究了不同病理学专业水平的诊断策略差异。为了进行这些研究,我们将原始注视点转换为代表病理学诊断线索的高解释性语义标签。因此,这些研究的结果可以很容易地转化为叙述性描述符,直接用于病理学教育和实践。
PathEdEx框架可用于捕捉病理学视觉和非视觉诊断启发法的最佳实践,这些实践可以传授给下一代病理学家,并有可能在精准医疗环境中简化精准诊断的实施。