Chi-Castañeda Donají, Suárez-Pozos Edna, Ortega Arturo
Laboratorio de Neurotoxicología, Departamento de Toxicología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Apartado Postal 14-740, Ciudad de México, 07000, México.
Soluciones para un México Verde S.A. de C.V., Ciudad de México, 01210, México.
Adv Neurobiol. 2017;16:199-224. doi: 10.1007/978-3-319-55769-4_10.
Glutamate (Glu) is the major excitatory neurotransmitter in the vertebrate central nervous system. During synaptic activity, Glu is released into the synaptic cleft and binds to Glu receptors activating a wide variety of signal transduction cascades. Extracellular Glu concentrations are maintained exclusively within physiological levels mainly by glial Glu transporters. Inefficient clearance of synaptic Glu may be neurotoxic owing to prolonged hyperactivation of postsynaptic Glu receptors, causing a multitude of intracellular events in the postsynaptic neuron, which ultimately results in neuronal cell death. This phenomenon is known as excitotoxicity and is the underlying mechanisms of a number of neurodegenerative diseases. Therefore, it is important to understand the regulation of Glu transporters' function. Transporter activity can be regulated in different ways, including gene expression, transporter protein targeting and trafficking, and posttranslational modifications of the transporter protein. The identification of these mechanisms has allowed to understand the role of Glu transporters during pathology and will aid in the development of therapeutic strategies for treating or preventing pathologies associated with excitotoxicity.
谷氨酸(Glu)是脊椎动物中枢神经系统中的主要兴奋性神经递质。在突触活动期间,Glu被释放到突触间隙并与Glu受体结合,激活多种信号转导级联反应。细胞外Glu浓度主要通过胶质细胞Glu转运体维持在生理水平内。突触Glu清除效率低下可能具有神经毒性,因为突触后Glu受体的长时间过度激活会在突触后神经元中引发大量细胞内事件,最终导致神经元细胞死亡。这种现象被称为兴奋性毒性,是许多神经退行性疾病的潜在机制。因此,了解Glu转运体功能的调节很重要。转运体活性可以通过不同方式进行调节,包括基因表达、转运体蛋白靶向和运输以及转运体蛋白的翻译后修饰。这些机制的确定有助于理解Glu转运体在病理过程中的作用,并将有助于开发治疗或预防与兴奋性毒性相关疾病的治疗策略。